Why Are We Wasting So Much Water?

by Mar 18, 2015Smart Cities

Roger Westberg

Roger Westberg is a semiconductor industry veteran at Maxim Integrated where he is the Smart Grid Segment Manager in the Market Experts Group of the Industrial & Medical Solutions BU focused on developing highly integrated system on chip solutions.


Who will you meet?

Cities are innovating, companies are pivoting, and start-ups are growing. Like you, every urban practitioner has a remarkable story of insight and challenge from the past year.

Meet these peers and discuss the future of cities in the new Meeting of the Minds Executive Cohort Program. Replace boring virtual summits with facilitated, online, small-group discussions where you can make real connections with extraordinary, like-minded people.


 

What is the most precious resource on earth? Gold, diamonds, or rare minerals? These items might come to mind first, but we can live without them. No, it’s water, something that every person needs to survive. Even though it is the most precious resource on earth, water is also a badly wasted and abused resource.

It’s interesting to note that although the earth is comprised of 70% water, people worldwide still don’t have access to enough clean and safe water to drink. As a matter of fact, freshwater makes up just 3% of the water supply, but less than 1% is freely available. The rest is tied up in in icebergs, glaciers, and snowcaps. This leaves us in the midst of what the United Nations is calling a “water crisis.” The issue is definitely not a lack of water, but a lack of clean water. In fact, millions of people die each year from preventable diseases, after drinking water from an unsanitary source.

Even in the United States, where water-borne illness is not a major concern, clean water supplies are finite and wasted water has negative consequences. Leaks can cause everything from rotten floors to mold infestations, to significant flooding events. Consumers pay higher bills; municipalities must create additional infrastructure such as dams and aqueducts that impact the environment.

Almost 20 million gallons of water are lost July 29, 2014 when a 93-year old water main ruptures at the University of California in Los Angeles.

Almost 20 million gallons of water are lost July 29, 2014 when a 93-year old water main ruptures at the University of California in Los Angeles.
Image courtesy of the Daily Bruin, Credit: Harrison Liddiard

Let’s look at the facts:

Measuring Lost Water

So now we ask, “How can someone allow their home to leak 90 gallons of water a day?” The problem may not be bad intentions or deliberate negligence, but rather bad measurement technology. Today’s mechanical water meters have poor accuracy, especially at low flow rates where they typically don’t register any flow at all. Over time the meter’s performance and accuracy degrade even further.

The minimum flow-rate requirement in the U.S. for cold-water meters is currently 0.95 liters per minute, which adds up to 1,363 liters/day. This requirement, established by the American Water Works Association (AWWA), has not changed since the first standard was proposed in 1921. Based on this standard, any flow below 0.95 liters per minute is measured as zero water use. Now it becomes clearer how a trillion gallons a year is lost and invisible due to leaks in U.S. homes.

Is there any good news?

Yes, the Natural Resources Defense Council (NRDC) in partnership with U.S. utilities submitted a proposal to reduce water waste by lowering the minimum measured flow rates to 0.2366 liters/minute (0.01m3/hour). That is good progress, but today’s static mechanical meters cannot meet this improved standard. Fortunately, ultrasonic metering technology can easily measure the proposed lower flow rate.

Ultrasonic flow-metering technology can detect flow rates below 1 liter per hour, which is 60 times better than current U.S. standards. Ultrasonic flow-rate detection uses silicon connected to two piezo elements. A pulse is transmitted from one piezo sensor to the other, and the delta in pulse times of flight (i.e., how long it takes the pulse to travel from one sensor to the other) reveals how fast a liquid is flowing between the sensors.

This ultrasonic technology was once reserved for very expensive water meters used in water distribution systems or industrial flow-monitoring systems. However, advances in sensor technology and more integration of the silicon-based analog front-end (AFE) have made this technology economically viable for mass deployment of utility water meters. The yield forecast is a 10x improvement over today’s traditional mechanical meters.

Adoption of ultrasonic metering technology will enable the detection of very low flow rates to better identify leaks and water waste. So, what’s holding it up? A combination of public education and legislative pressure are needed to move society away from their grandfather’s water meters. The resistance to the rollout of smart electricity meters demonstrated what can go wrong when the public isn’t bought in to new technology, no matter how beneficial.

How can I learn more?

To see an example of an ultrasonic flow meter, visit Maxim’s REFDES70#: High Precision, Long Battery Life Heat/Flow Meter. This reference design is based on the MAX35101, a time-to-digital converter with an integrated AFE. It performs time-of-flight difference measurements on upstream and downstream ultrasonic pulses. The accompanying documentation includes a detailed explanation of how the flow rate is calculated using the ultrasonic measurements.

Time to get “water-wise”

What else can we do? Use WaterSense labeled products! They are backed by independent third-party certification and meet the EPA’s specifications for water efficiency and performance. But, we shouldn’t stop there. There are lots of things that we can do in our own home to reduce water use and get more from less:

In the bathroom—where over half of all water use takes place inside a home:

  • Turn off the tap while shaving or brushing teeth.
  • Take showers instead of baths to save water.

In the kitchen—whip up a batch of big water savings:

  • Plug up the sink or use a wash basin if washing dishes by hand.
  • Use a dishwasher that is fully loaded.
  • Keep a pitcher of drinking water in the refrigerator instead of letting the faucet run until the water is cool.


In the laundry room—where you can be clean and green:

  • Wash only full loads of laundry or use the appropriate water level or load size selection on the washing machine.


In the yard—be beautiful and efficient:

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Middle-Mile Networks: The Middleman of Internet Connectivity

Middle-Mile Networks: The Middleman of Internet Connectivity

The development of public, open-access middle mile infrastructure can expand internet networks closer to unserved and underserved communities while offering equal opportunity for ISPs to link cost effectively to last mile infrastructure. This strategy would connect more Americans to high-speed internet while also driving down prices by increasing competition among local ISPs.

In addition to potentially helping narrow the digital divide, middle mile infrastructure would also provide backup options for networks if one connection pathway fails, and it would help support regional economic development by connecting businesses.

Wildfire Risk Reduction: Connecting the Dots

Wildfire Risk Reduction: Connecting the Dots

One of the most visceral manifestations of the combined problems of urbanization and climate change are the enormous wildfires that engulf areas of the American West. Fire behavior itself is now changing.  Over 120 years of well-intentioned fire suppression have created huge reserves of fuel which, when combined with warmer temperatures and drought-dried landscapes, create unstoppable fires that spread with extreme speed, jump fire-breaks, level entire towns, take lives and destroy hundreds of thousands of acres, even in landscapes that are conditioned to employ fire as part of their reproductive cycle.

ARISE-US recently held a very successful symposium, “Wildfire Risk Reduction – Connecting the Dots”  for wildfire stakeholders – insurers, US Forest Service, engineers, fire awareness NGOs and others – to discuss the issues and their possible solutions.  This article sets out some of the major points to emerge.

Innovating Our Way Out of Crisis

Innovating Our Way Out of Crisis

Whether deep freezes in Texas, wildfires in California, hurricanes along the Gulf Coast, or any other calamity, our innovations today will build the reliable, resilient, equitable, and prosperous grid tomorrow. Innovation, in short, combines the dream of what’s possible with the pragmatism of what’s practical. That’s the big-idea, hard-reality approach that helped transform Texas into the world’s energy powerhouse — from oil and gas to zero-emissions wind, sun, and, soon, geothermal.

It’s time to make the production and consumption of energy faster, smarter, cleaner, more resilient, and more efficient. Business leaders, political leaders, the energy sector, and savvy citizens have the power to put investment and practices in place that support a robust energy innovation ecosystem. So, saddle up.

The Future of Cities

Mayors, planners, futurists, technologists, executives and advocates — hundreds of urban thought leaders publish on Meeting of the Minds. Sign up to follow the future of cities.

You have Successfully Subscribed!

Wait! Before You Leave —

Wait! Before You Leave —

Subscribe to receive updates on the Executive Cohort Program!

You have Successfully Subscribed!

Share This