Why Are We Wasting So Much Water?

By Roger Westberg

Roger Westberg is a semiconductor industry veteran at Maxim Integrated where he is the Smart Grid Segment Manager in the Market Experts Group of the Industrial & Medical Solutions BU focused on developing highly integrated system on chip solutions.

Mar 18, 2015 | Smart Cities | 0 comments

What is the most precious resource on earth? Gold, diamonds, or rare minerals? These items might come to mind first, but we can live without them. No, it’s water, something that every person needs to survive. Even though it is the most precious resource on earth, water is also a badly wasted and abused resource.

It’s interesting to note that although the earth is comprised of 70% water, people worldwide still don’t have access to enough clean and safe water to drink. As a matter of fact, freshwater makes up just 3% of the water supply, but less than 1% is freely available. The rest is tied up in in icebergs, glaciers, and snowcaps. This leaves us in the midst of what the United Nations is calling a “water crisis.” The issue is definitely not a lack of water, but a lack of clean water. In fact, millions of people die each year from preventable diseases, after drinking water from an unsanitary source.

Even in the United States, where water-borne illness is not a major concern, clean water supplies are finite and wasted water has negative consequences. Leaks can cause everything from rotten floors to mold infestations, to significant flooding events. Consumers pay higher bills; municipalities must create additional infrastructure such as dams and aqueducts that impact the environment.

Almost 20 million gallons of water are lost July 29, 2014 when a 93-year old water main ruptures at the University of California in Los Angeles.

Almost 20 million gallons of water are lost July 29, 2014 when a 93-year old water main ruptures at the University of California in Los Angeles.
Image courtesy of the Daily Bruin, Credit: Harrison Liddiard

Let’s look at the facts:

Measuring Lost Water

So now we ask, “How can someone allow their home to leak 90 gallons of water a day?” The problem may not be bad intentions or deliberate negligence, but rather bad measurement technology. Today’s mechanical water meters have poor accuracy, especially at low flow rates where they typically don’t register any flow at all. Over time the meter’s performance and accuracy degrade even further.

The minimum flow-rate requirement in the U.S. for cold-water meters is currently 0.95 liters per minute, which adds up to 1,363 liters/day. This requirement, established by the American Water Works Association (AWWA), has not changed since the first standard was proposed in 1921. Based on this standard, any flow below 0.95 liters per minute is measured as zero water use. Now it becomes clearer how a trillion gallons a year is lost and invisible due to leaks in U.S. homes.

Is there any good news?

Yes, the Natural Resources Defense Council (NRDC) in partnership with U.S. utilities submitted a proposal to reduce water waste by lowering the minimum measured flow rates to 0.2366 liters/minute (0.01m3/hour). That is good progress, but today’s static mechanical meters cannot meet this improved standard. Fortunately, ultrasonic metering technology can easily measure the proposed lower flow rate.

Ultrasonic flow-metering technology can detect flow rates below 1 liter per hour, which is 60 times better than current U.S. standards. Ultrasonic flow-rate detection uses silicon connected to two piezo elements. A pulse is transmitted from one piezo sensor to the other, and the delta in pulse times of flight (i.e., how long it takes the pulse to travel from one sensor to the other) reveals how fast a liquid is flowing between the sensors.

This ultrasonic technology was once reserved for very expensive water meters used in water distribution systems or industrial flow-monitoring systems. However, advances in sensor technology and more integration of the silicon-based analog front-end (AFE) have made this technology economically viable for mass deployment of utility water meters. The yield forecast is a 10x improvement over today’s traditional mechanical meters.

Adoption of ultrasonic metering technology will enable the detection of very low flow rates to better identify leaks and water waste. So, what’s holding it up? A combination of public education and legislative pressure are needed to move society away from their grandfather’s water meters. The resistance to the rollout of smart electricity meters demonstrated what can go wrong when the public isn’t bought in to new technology, no matter how beneficial.

How can I learn more?

To see an example of an ultrasonic flow meter, visit Maxim’s REFDES70#: High Precision, Long Battery Life Heat/Flow Meter. This reference design is based on the MAX35101, a time-to-digital converter with an integrated AFE. It performs time-of-flight difference measurements on upstream and downstream ultrasonic pulses. The accompanying documentation includes a detailed explanation of how the flow rate is calculated using the ultrasonic measurements.

Time to get “water-wise”

What else can we do? Use WaterSense labeled products! They are backed by independent third-party certification and meet the EPA’s specifications for water efficiency and performance. But, we shouldn’t stop there. There are lots of things that we can do in our own home to reduce water use and get more from less:

In the bathroom—where over half of all water use takes place inside a home:

  • Turn off the tap while shaving or brushing teeth.
  • Take showers instead of baths to save water.

In the kitchen—whip up a batch of big water savings:

  • Plug up the sink or use a wash basin if washing dishes by hand.
  • Use a dishwasher that is fully loaded.
  • Keep a pitcher of drinking water in the refrigerator instead of letting the faucet run until the water is cool.


In the laundry room—where you can be clean and green:

  • Wash only full loads of laundry or use the appropriate water level or load size selection on the washing machine.


In the yard—be beautiful and efficient:

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

COVID-19 is Creating the Largest Ever Telecommunity, But Not for Everyone

COVID-19 is Creating the Largest Ever Telecommunity, But Not for Everyone

Social distancing is becoming the new normal, at least for those of us who are heeding the Center for Disease Control’s warnings and guidelines. But if you don’t have reliable, high-speed broadband, it is impossible to engage in what is now the world’s largest telecommunity. As many schools and universities around the world (including those of my kids) are shut down, these institutions are optimistically converting to online and digital learning. However, with our current broadband layout, this movement will certainly leave many Americans behind.

How to Move More People with Fewer Vehicles

How to Move More People with Fewer Vehicles

Accenture analysts recently released a report calling for cities to take the lead in creating coordinated, “orchestrated” mobility ecosystems. Limiting shared services to routes that connect people with mass transit would be one way to deploy human-driven services now and to prepare for driverless service in the future. Services and schedules can be linked at the backend, and operators can, for example, automatically send more shared vehicles to a train station when the train has more passengers than usual, or tell the shared vehicles to wait for a train that is running late.

Managing urban congestion and mobility comes down to the matter of managing space. Cities are characterized by defined and restricted residential, commercial, and transportation spaces. Private autos are the most inefficient use of transportation space, and mass transit represents the most efficient use of transportation space. Getting more people out of private cars, and into shared feeder routes to and from mass transit modes is the most promising way to reduce auto traffic. Computer models show that it can be done, and we don’t need autonomous vehicles to realize the benefits of shared mobility.

Planning for Arts and Culture in San Diego

Planning for Arts and Culture in San Diego

The role of government, and the planning community, is perhaps to facilitate these kinds of partnerships and make it easier for serendipity to occur. While many cities mandate a portion of the development budget toward art, this will not necessarily result in an ongoing benefit to the arts community as in most cases the budget is used for public art projects versus creating opportunities for cultural programming.  

Rather than relying solely on this mandate, planners might want to consider educating developers with examples and case studies about the myriad ways that artists can participate in the development process. Likewise, outreach and education for the arts community about what role they can play in projects may stimulate a dialogue that can yield great results. In this sense, the planning community can be an invaluable translator in helping all parties to discover a richer, more inspiring, common language.

Share This