Why Are We Wasting So Much Water?

By Roger Westberg

Roger Westberg is a semiconductor industry veteran at Maxim Integrated where he is the Smart Grid Segment Manager in the Market Experts Group of the Industrial & Medical Solutions BU focused on developing highly integrated system on chip solutions.

Mar 18, 2015 | Smart Cities | 0 comments

What is the most precious resource on earth? Gold, diamonds, or rare minerals? These items might come to mind first, but we can live without them. No, it’s water, something that every person needs to survive. Even though it is the most precious resource on earth, water is also a badly wasted and abused resource.

It’s interesting to note that although the earth is comprised of 70% water, people worldwide still don’t have access to enough clean and safe water to drink. As a matter of fact, freshwater makes up just 3% of the water supply, but less than 1% is freely available. The rest is tied up in in icebergs, glaciers, and snowcaps. This leaves us in the midst of what the United Nations is calling a “water crisis.” The issue is definitely not a lack of water, but a lack of clean water. In fact, millions of people die each year from preventable diseases, after drinking water from an unsanitary source.

Even in the United States, where water-borne illness is not a major concern, clean water supplies are finite and wasted water has negative consequences. Leaks can cause everything from rotten floors to mold infestations, to significant flooding events. Consumers pay higher bills; municipalities must create additional infrastructure such as dams and aqueducts that impact the environment.

Almost 20 million gallons of water are lost July 29, 2014 when a 93-year old water main ruptures at the University of California in Los Angeles.

Almost 20 million gallons of water are lost July 29, 2014 when a 93-year old water main ruptures at the University of California in Los Angeles.
Image courtesy of the Daily Bruin, Credit: Harrison Liddiard

Let’s look at the facts:

Measuring Lost Water

So now we ask, “How can someone allow their home to leak 90 gallons of water a day?” The problem may not be bad intentions or deliberate negligence, but rather bad measurement technology. Today’s mechanical water meters have poor accuracy, especially at low flow rates where they typically don’t register any flow at all. Over time the meter’s performance and accuracy degrade even further.

The minimum flow-rate requirement in the U.S. for cold-water meters is currently 0.95 liters per minute, which adds up to 1,363 liters/day. This requirement, established by the American Water Works Association (AWWA), has not changed since the first standard was proposed in 1921. Based on this standard, any flow below 0.95 liters per minute is measured as zero water use. Now it becomes clearer how a trillion gallons a year is lost and invisible due to leaks in U.S. homes.

Is there any good news?

Yes, the Natural Resources Defense Council (NRDC) in partnership with U.S. utilities submitted a proposal to reduce water waste by lowering the minimum measured flow rates to 0.2366 liters/minute (0.01m3/hour). That is good progress, but today’s static mechanical meters cannot meet this improved standard. Fortunately, ultrasonic metering technology can easily measure the proposed lower flow rate.

Ultrasonic flow-metering technology can detect flow rates below 1 liter per hour, which is 60 times better than current U.S. standards. Ultrasonic flow-rate detection uses silicon connected to two piezo elements. A pulse is transmitted from one piezo sensor to the other, and the delta in pulse times of flight (i.e., how long it takes the pulse to travel from one sensor to the other) reveals how fast a liquid is flowing between the sensors.

This ultrasonic technology was once reserved for very expensive water meters used in water distribution systems or industrial flow-monitoring systems. However, advances in sensor technology and more integration of the silicon-based analog front-end (AFE) have made this technology economically viable for mass deployment of utility water meters. The yield forecast is a 10x improvement over today’s traditional mechanical meters.

Adoption of ultrasonic metering technology will enable the detection of very low flow rates to better identify leaks and water waste. So, what’s holding it up? A combination of public education and legislative pressure are needed to move society away from their grandfather’s water meters. The resistance to the rollout of smart electricity meters demonstrated what can go wrong when the public isn’t bought in to new technology, no matter how beneficial.

How can I learn more?

To see an example of an ultrasonic flow meter, visit Maxim’s REFDES70#: High Precision, Long Battery Life Heat/Flow Meter. This reference design is based on the MAX35101, a time-to-digital converter with an integrated AFE. It performs time-of-flight difference measurements on upstream and downstream ultrasonic pulses. The accompanying documentation includes a detailed explanation of how the flow rate is calculated using the ultrasonic measurements.

Time to get “water-wise”

What else can we do? Use WaterSense labeled products! They are backed by independent third-party certification and meet the EPA’s specifications for water efficiency and performance. But, we shouldn’t stop there. There are lots of things that we can do in our own home to reduce water use and get more from less:

In the bathroom—where over half of all water use takes place inside a home:

  • Turn off the tap while shaving or brushing teeth.
  • Take showers instead of baths to save water.

In the kitchen—whip up a batch of big water savings:

  • Plug up the sink or use a wash basin if washing dishes by hand.
  • Use a dishwasher that is fully loaded.
  • Keep a pitcher of drinking water in the refrigerator instead of letting the faucet run until the water is cool.


In the laundry room—where you can be clean and green:

  • Wash only full loads of laundry or use the appropriate water level or load size selection on the washing machine.


In the yard—be beautiful and efficient:

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Read more from the Meeting of the Minds Blog

Spotlighting innovations in urban sustainability and connected technology

Closing the Water Access Gap in the United States

Closing the Water Access Gap in the United States

Today, over 2 million Americans are living without access to clean, running water. The newly released ‘Close The Water Gap’ report by DigDeep and the US Water Alliance pulls back the veil on America’s hidden water crisis.

This is the first-ever comprehensive look at indoor water access across the United States, and its findings are explosive: Race is the strongest predictor of vulnerability. In six states (plus Puerto Rico), progress is actually backsliding. More than 44 million Americans are served by water systems with recent violations of the Safe Drinking Water Act.

The Link Between Climate Change & Water

The Link Between Climate Change & Water

When thinking about conserving water, we should also be focusing on how more efficient water use correlates with energy savings. Studies show that when households participate in water savings programs, they also conserve energy and reduce strain on the power grid during peak demand periods while saving consumers money on their utility bills.

Water utilities can also dramatically increase their energy efficiency and reduce overall energy usage by adopting locally based solutions. For many municipal governments, drinking water and wastewater treatment plants are typically the largest energy consumers, often accounting for 30 to 40 percent of total energy consumed. Overall, drinking water and wastewater systems account for approximately two percent of energy use in the United States, adding over 45 million tons of greenhouse gases annually.

Using Data to Reduce Public Health Risk

Using Data to Reduce Public Health Risk

Addressing the impact of heat on health is well-aligned with MCDPH’s vision and mission “to make healthy lives possible” by protecting and promoting the health and well-being of MC residents and visitors. The climate has significant impacts on our community’s health. Through extensive surveillance and community surveys, we have demonstrated the importance of local public health data to increase buy-in from new and existing partners and obtain funding to address this significant public health issue. We encourage other health departments to consider the power of data and collaboration as they seek methods for protecting the public’s health from a changing climate.

Share This