Zero-Net-Energy Schools

By John Addison

John Addison is the author of two books - Save Gas, Save the Planet that details the future of transportation and Revenue Rocket about technology partner strategy. CNET, Clean Fleet Report, and Meeting of the Minds have published over 300 of his articles. Prior to being a writer and speaker, he was in partner and sales management for technology companies such as Sun Microsystems. Follow John on Twitter @soaringcities.

In the Marx Brothers comedy classic Duck Soup, Groucho as a nation’s president said, “Why a four-year-old child could understand this report. Run out and find me a four-year-old child. I can’t make head nor tail out of it.”

When it comes to zero-net-energy (ZNE) buildings, children are leading the way. In one year, a ZNE building generates with its own renewable energy the equivalent energy it consumes in that year. Typically, some months a ZNE building is generating excess electricity that is supplied to the grid, other months a ZNE building is using electricity from the grid.

After ZNE homes, schools have more ZNE buildings than any other sector of our built environment. There are 100,000 public schools in the U.S, so we are just getting started. Currently, children miss 14 million-school days due to asthma and lung diseases. In ZNE buildings, children are absent less and learn more due to better lighting, natural daylighting, and use of more healthy materials.

We need to invest more in education. These children are our future in a competitive global economy. Currently, U.S. schools, kindergarten through twelfth grade (K-12), spend $8 billion annually on energy, more than on computers and textbooks combined. Over a 20-year period, energy efficiency and renewables save billions that can be invested in better education. RMI Report

Schools Lead in Zero Net Energy

The Energy Lab at Hawai’i Preparatory Academy is ZNE and the first K–12 school facility to achieve “Living” certification through the Living Building Challenge (LBC) by harvesting at least as much energy and water as it uses over the course of a year, using low-impact building materials, and producing zero waste. It’s great for learning, with strong use of natural lighting and ventilation. The science building houses classroom and meeting spaces for a school curriculum focused on renewable energy, and includes rainwater harvesting, onsite wastewater treatment, and a 26 kW photovoltaic array. NBI Report

Locust Trace AgriScience Farm is a ZNE-certified technical high school near Lexington, Kentucky. In addition to preparing students with English, science, math, all the needed core courses, Locust Trace provides hands-on training in agriculture with spacious classrooms with adjoining labs, 6.5 acres for gardening, a state-of-the-art greenhouse with an aquaculture area for raising fish, an equine barn and arena, and an on-site veterinary clinic. Roofs are graced with 175kW of solar PV. Three separate zones are heated and cooled only as needed, using a dual-stage water source heat pump and an energy recovery dedicated outside air unit. Since the building has much higher heating loads than cooling loads, solar thermal radiant heating system is included and produces an average of 40,000 BTU per day.

When my grandfather grew up in Kentucky, it was a coal state. Now coal jobs are at the lowest level in 118 years, with 6,900 working in the coal industry. Yet there are 74,000 construction workers in Kentucky, with more creating high-performance buildings than those that ever worked in coal. Kentucky is showing ZNE leadership in schools.

Big Impact of Lighting, Heating, and Cooling

For most school districts, it is easier to start with one ZNE building, rather than with an entire campus. It could be a library, environmental center, music building, or district office building. ZNE is easier to accomplish in a new building than in retrofitting.

In a typical school building, 30 percent of energy is for lighting. LED lighting uses only a fraction of the energy of older lights. Add low-cost sensors and controls, and lights are automatically turned-off when no one is present. Design classrooms to make good use of natural light and students learn more, have less behavioral issues, and use even less electricity. Studies have documented 20 to 26 percent test improvements in natural daylight environments.

In a typical school, 35 percent of energy is for heating and cooling. More schools, like Hawai’i Preparatory, use good passive design to orient the building for warmth in winter and cooling for hot days, and make best use of natural ventilation; more learning, less energy. HVAC demands are minimal in buildings with well-insulated walls, roofs, and windows. With ground source heat exchange, HVAC can often be eliminated.

The Collaborative for High Performance Schools (CHPS) is the United States’ first green building rating program especially designed for K-12 schools. CHPS provides information and resources to schools in order to facilitate the construction and operation of high performance institutions. A high performance school is energy and resource efficient as well as healthy, comfortable, well lit, and designed for a quality education.

Many states have excellent programs. For example, the California Clean Energy Jobs Act of 2012 (Prop 39) provides up to $550 million per year to improve energy efficiency and increase the use of clean energy in public schools and community colleges. The Prop 39 ZNE Schools Pilot assists schools in retrofitting existing facilities to ZNE. By 2025, all new government buildings in California must be ZNE. By 2030, California will be 50 percent renewable energy.

University of California = Carbon Neutral 2025

The UC Carbon Neutrality Initiative is dedicated to achieving net-zero greenhouse gas emissions by 2025 across all 10 UC campuses. This is ambitious due to the energy demands of over half a million people, power-hungry research labs, and hundreds of buildings. Yet, the UC system is already a model example of clean energy.

The University of California Irvine, my alma mater, was ranked No. 1 in Sierra magazine’s “Cool Schools” ranking of the nation’s greenest colleges. Buildings are energy-efficient, with over 20 buildings LEED Platinum and Gold. When I visit the campus, solar roofs and parking structures are visible everywhere.

Sister campus, UC San Diego, saves over $10 million annually in utility bills by generating its own electricity with solar, 30 MW of combined heat and power, and fuel cells. The campus has its own substation and microgrid and with multiple thermal and battery storage systems.

The UC Carbon Neutrality Initiative is also inspiring the communities of the 10 UC campuses. Near UC Davis, two thousand people live in the ZNE community of West Village in Davis. The project includes 662 apartments, 343 single-family homes, 42,500 square feet of commercial space, a recreation center and study facilities.

The Davis homes are super efficient and typically use solar power. Energy efficiency is achieved with tight construction, triple pane windows, great insulation everywhere, Energy Star appliances and LED lighting. These homes are designed and ventilated to stay cool in the summer and warm in the winter. Heat pump and space cooling is used instead of energy-hungry conventional HVAC. With excellent energy efficiency, solar power can meet most energy needs.

Other UC solutions include an 80 megawatt solar array in the Central Valley (the largest at any U.S. university), an experimental anaerobic digester that is using food waste to produce bio-methane, a molten carbonate fuel cell that generates 2.8 megawatts of electricity from municipal wastewater treatment emissions, smart lighting and smart building systems, and a solar greenhouse that selectively harvests light for solar electricity. Research labs may need air conditioning at the same time that classrooms need heating. Intelligent heat exchange can dramatically reduce the energy for heating ventilation and air conditioning systems (HVAC).

From a first grader, learning more in a naturally lighted and ventilated classroom, to a new university graduate eager to make the world better, students are increasingly experiencing that all our energy needs can be meet with zero-net energy.

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Encouraging Civic Engagement with What Matters Most to Residents

Encouraging Civic Engagement with What Matters Most to Residents

OurStreets origins are rooted in capturing latent sentiment on social media and converting it to standardized data. It all started in July 2018, when OurStreets co-founder, Daniel Schep, was inspired by the #bikeDC community tweeting photos of cars blocking bike lanes, and built the @HowsMyDrivingDC Twitter bot. The bot used license plate info to produce a screenshot of the vehicle’s outstanding citations from the DC DMV website.

Fast forward to March 2020, and D.C. Department of Public Works asking if we could repurpose OurStreets to crowdsource the availability of essential supplies during the COVID-19 crisis. Knowing how quickly we needed to move in order to be effective, we set out to make a new OurStreets functionality viable nationwide.

How Urban Industry Can Contribute Green Solutions for COVID-Related Health Disparities

How Urban Industry Can Contribute Green Solutions for COVID-Related Health Disparities

The best nature-based solutions on urban industrial lands are those that are part of a corporate citizenship or conservation strategy like DTE’s or Phillips66. By integrating efforts such as tree plantings, restorations, or pollinator gardens into a larger strategy, companies begin to mainstream biodiversity into their operations. When they crosswalk the effort to other CSR goals like employee engagement, community relations, and/or workforce development, like the CommuniTree initiative, the projects become more resilient.

Air quality in urban residential communities near industrial facilities will not be improved by nature alone. But nature can contribute to the solution, and while doing so, bring benefits including recreation, education, and an increased sense of community pride. As one tool to combat disparate societal outcomes, nature is accessible, affordable and has few, if any, downsides.

Crisis funding for public parks

Crisis funding for public parks

I spoke last week to Adrian Benepe, former commissioner for the NYC Parks Department and currently the Senior Vice President and Director of National Programs at The Trust for Public Land.

We discussed a lot of things – the increased use of parks in the era of COVID-19, the role parks have historically played – and currently play – in citizens’ first amendment right to free speech and protests, access & equity for underserved communities, the coming budget shortfalls and how they might play out in park systems.

I wanted to pull out the discussion we had about funding for parks and share Adrian’s thoughts with all of you, as I think it will be most timely and valuable as we move forward with new budgets and new realities.

Subscribe to Our Weekly Newsletter

Sign up for our email list to receive resources and invites related to sustainability, equity, and technology in cities!

You have Successfully Subscribed!

Share This