Automated Mobility-on-Demand, Accessibility and Residential Relocation: a simulation-based analysis

Meng Zhou ¹, Diem-Trinh Le ¹*, Duy Quy Nguyen-Phuoc ¹, P. Christopher Zegras ², Joseph Ferreira Jr ²

¹ Future Urban Mobility, Singapore-MIT Alliance for Research and Technology
² Massachusetts Institute of Technology

Feb 16 2022
Outline

- Motivation
- Objectives
- Methods
- Application
- Results
- Conclusions
Motivations
Automated Vehicles (AVs) – mobility’s next ‘big thing’?

1st prototype of Autonomous Buggy

2010

Autonomous Car @One-North pilot

2015

Delphi acquires nuTonomy (Spin-off)

2017
Levels of Automation

1. E.g. Cruise Control
2. Tesla’s autopilot
3. Driver required, can pass ‘safety-critical’ functions to car
4. Can be programmed not to drive in certain conditions
5. Full automation
Automation – when…?

AVs and the Automakers (plans circa 2017)

<table>
<thead>
<tr>
<th>Automaker</th>
<th>Key partnerships</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td>Cruise Automation and Lyft</td>
<td>Nothing specific</td>
</tr>
<tr>
<td>Ford</td>
<td>Argo AI</td>
<td>Level 4 2021</td>
</tr>
<tr>
<td>Honda</td>
<td>Cruise (GM)</td>
<td>Highways by 2020</td>
</tr>
<tr>
<td>Toyota</td>
<td></td>
<td>Highways by 2020</td>
</tr>
<tr>
<td>Renault-Nissan</td>
<td>Microsoft</td>
<td>Urban by 2020</td>
</tr>
<tr>
<td>Volvo</td>
<td>Uber</td>
<td>Highway by 2021</td>
</tr>
<tr>
<td>Hyundai</td>
<td>Bosch, Uber; Trucks</td>
<td>Highway 2020; urban 2030</td>
</tr>
<tr>
<td>Daimler</td>
<td></td>
<td>4 and 5 by Early 2020s</td>
</tr>
<tr>
<td>Fiat-Chrysler</td>
<td></td>
<td>Unclear</td>
</tr>
<tr>
<td>BMW</td>
<td>Intel, Mobileye</td>
<td>4 or 5 by 2021</td>
</tr>
<tr>
<td>Tesla</td>
<td></td>
<td>Opaque…</td>
</tr>
</tbody>
</table>

Company press releases, etc.
‘Self-Driving’ Cars Begin to Emerge from a Cloud of Hype

Developers try to overcome a multitude of technical challenges before vehicles drive on their own.

By: Steven E. Shladover

September 25, 2021

At the time, virtually every major motor vehicle manufacturer and high-tech company predicted widespread deployment of automated driving systems (ADS) by 2020.
Automation – when…?

‘Self-Driving’ Cars Begin to Emerge from a Cloud of Hype

Developers try to overcome a multitude of technical challenges before vehicles drive on their own

By: Steven E. Shladover

September 25, 2021

The technology will initially be implemented for specialized uses such as local package delivery, long-haul trucking on motorways, urban transit services on fixed routes and, in more limited locations, for urban and suburban automated passenger ride hailing.
Mobility-on-Demand

Uber

https://secondmeasure.com/datapoints/rideshare-industry-overview/
Mobility-on-Demand

Uber

Rideshare - Monthly Sales

Indexed U.S. Sales*

Lyft 30%
Ubber 70%

December 2021
Share of Sales

* Indexed to rideshare Jan 2016 sales (=100).
* Some Uber Eats sales are indistinguishable from Uber rides sales, especially in May-Aug. 2019. Corporate spending and purchases made with Uber Cash are not included.

https://secondmeasure.com/datapoints/rideshare-industry-overview/
Automated Mobility-on-Demand (AMoD)

• Convergence of automation and sharing (shared AV or SAV)

• Potential benefits: efficiency, reliability, safety, affordability, accessibility…

Waymo’s driverless taxi service can now be accessed on Google Maps

Kirsten Korosec
@kirstenkorosec / 2:00 PM EDT • June 3, 2021

https://techcrunch.com/2021/06/03/waymos-driverless-taxi-service-can-now-be-accessed-on-google-maps/
AVs, SAVs & AMOD: potential impacts (vehicle miles traveled, vmt)

<table>
<thead>
<tr>
<th>Influencing Factor</th>
<th>Increases VMT</th>
<th>Decreases VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebound effect</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Car-sharing and reduced vehicle ownership</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Driverless taxis</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Greater sprawl</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Substitute for intracity or intercity public transportation</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Total VMT
AVs, SAVs & AMOD: potential impacts

Evaluating the systemic effects of automated mobility-on-demand services via large-scale agent-based simulation of auto-dependent prototype cities

Jimi B. Okea,b,*, Arun Prakash Akkinepallyb, Siyu Chenb, Yifei Xieb, Youssef M. Aboutalebb, Carlos Lima Azevedoc, P. Christopher Zegrasd, Joseph Ferreirad, Moshe Ben-Akivad

Metro Area “like Boston”:
- AMOD increases VKT
- AMOD w/ transit integration (AMOD TI) \(\rightarrow \) (slightly) better outcomes (VKT and congestion).
AVs, SAVs & AMOD: potential longer term impacts

I. Walking-Horsecar Era
II. Streetcar Era
III. Recreational Auto Era
IV. Freeway Era
V. Post-2000?

Muller, 2004
AVs & Traditional Urban Economic Theory

Automation and urban development

Should we expect anything different?
AVs, SAVs & AMOD: potential longer term impacts

• Value of time and generalized costs of travel
 • Congestion *may* decrease
 • Tolerance for congestion *will* increase
 • \(\rightarrow \) expansionary

• Parking
 • Policy (and sharing) matters

• Infrastructure, Urban & Building Design
 • Smaller footprints? Need for less “room for error”
 • SAVs+EVs: seamless interfaces between public/private spaces

• AVs Demand for density and the future of agglomeration economies
 • Centripetal <> Centrifugal?
 • Many other things matter here: ‘future of work’, post-pandemia, etc.
Research Objectives
Knowledge gaps

• Little attention on AMoD impacts on accessibility, long-term mobility choices, and urban growth patterns
• Existing studies lack spatiotemporal & demographic granularity
• Realistic depiction of housing market behaviours is also missing: only consumer choices, no supply-side behaviours or bargaining processes
Research Questions

• What is the impact of AMOD on individuals’ **accessibility** and how does the effect vary across socioeconomic groups?
• How might we expect **residential location patterns** to change under different AMOD scenarios?
Methods
Research Design

- Agent-based microsimulation
 - Modelling individual (heterogenous) long-term mobility decisions
- Scenario analysis
 - Comparative analysis of hypothetical future AMOD scenarios
- SimMobility
 - An integrated *agent-* and *activity-based* simulation platform
• Microsimulation (Agent-based) Integrated/ modular platform
• Activity-Based Persons and goods
• Multiple spatial-temporal scales
• Dynamic plan/action-transaction behavioral models
• Multimodal networks
• Open-source
SimMobility Mid-Term: Activity-based model

Integrates:
- Pre-day
- Within-day
- Supply

→ Theoretically consistent link to Long-Term Activity-Based Accessibility (ABA)

→ Economic Evaluation Criterion

Oh et al, 2020
Activity-based Accessibility (ABA)

Benefit ("Expected Maximum Utility") of the Day Pattern Choice (conditional upon given location)

Oh et al, 2020
SimMobility Long-Term: Dynamic real-estate market

Zhu et al. 2018

Pre-process
Stock
Choice/Behavioral model
Process
★ Direct link to Mid-term Simulator (logsum accessibility)
SimMobility Long-Term: ABA-links (to mid-term)

Zhu et al. 2018

Direct link to Mid-term Simulator (logsum accessibility)
Application
Study Area

Source: Zhou et al., (2022)
Data

• **Synthetic population** (1.9 million households & 6.7 million individuals)
 • Based on Household Interview Travel Survey (HITS) data
 • Built environment: various sources

• Activity-based models (mid-term)
 • Estimated with HITS data
 • Calibrated with transit smartcard (EZLink) data & SP survey data on AMOD adoption

• Housing market models
 • Estimated with REALIS transaction data, HDB resale data & HITS data
Scenarios

Baseline

Partial Automation (PA)

Full Automation (FA)
Other simulation specifications

• Housing market simulation: 10 repeated **one-year** runs of daily market dynamics for each scenario

• AMoD pricing: 75% of conventional taxis & additional 30% **off** for shared rides
 - Additional modifications to utility function based on SP survey
 (Seshadri et al, 2019)

• AMoD level-of-service & fleet size (4-, 6-seaters): updated/optimized through feedback loops between mid-term & long-term modules
Results
Accessibility Impacts (Overall)

Compared to Baseline

Source: Zhou et al., (2022)
Accessibility Impacts (Gender)

Source: Zhou et al., (2022)
Accessibility Impacts (Age)

Source: Zhou et al., (2022)
Accessibility Impacts (Income)

Source: Zhou et al., (2022)
Accessibility Impacts (car owners)

Source: Zhou et al., (2022)
Accessibility Impacts (across space)

Zone-averaged ABA by residence

Baseline

PA

FA

Source: Zhou et al., (2022)
Housing Market Summary

Source: Zhou et al., (2022)
Residential Relocation (% difference in total population change by zone, relative to baseline)

Source: Zhou et al., (2022)
Residential Relocation (by HH Types, % difference in FA relative to baseline)

Average household size

Average household income

% of movers with children

% of movers with multiple workers

Source: Zhou et al., (2022)
Conclusions
Key Findings

Full substitution of private cars with AMoD: measurably distinct influences on individual accessibility

• Mostly *more privileged* groups experience larger accessibility impacts
• Full Automation: City center more attractive
 - especially for larger & richer households with kids
Discussion

• AMoD service (under our hypothetical design)
 - not yet able to fill private mobility’s shoes w.r.t. accessibility

• Full Automation (AMoD with private mode ban)
 - reduces social inequality in accessibility (what would happen with just private ban?)

• Induced Sprawl?
 - Little evidence in either scenario (unique to Singapore?)

• Central areas (with better transit & denser amenities): more attractive
 - Possible gentrification effects in Full Automation
Future Research

• AMoD impacts on weekly (and longer) activity patterns

Hermawan et al, 2022
Future Research

• AMoD impacts on weekly (and longer) activity patterns
• Varying taste parameters across different scenarios
• Intra-household dynamics (Accessibility) and residential decisions
• Sensitivity analysis of pricing & fleet size
• Broader examination of longer term impacts (job and school location changes, new development (residential and commercial), & (maybe) demographic changes
• Extensions to broader impacts – carbon, local AQ, accidents…
Acknowledgements

This research is supported by the Singapore Ministry of National Development and the National Research Foundation (NRF), Prime Minister’s Office under the Land and Liveability National Innovation Challenge (L2 NIC) Research Programme (Award No. L2NICTDF1-2016-3). We would also like to thank the Ministry of Transport (MOT), the Urban Redevelopment Authority (URA), the Land Transport Authority (LTA), and the Housing Development Board (HDB) for their support of the research project. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the MOT, the URA, the LTA, the HDB, or the NRF.
References

Thanks for your attention