Unnatural Gas

By John Addison

John Addison is the author of two books - Save Gas, Save the Planet that details the future of transportation and Revenue Rocket about technology partner strategy. CNET, Clean Fleet Report, and Meeting of the Minds have published over 300 of his articles. Prior to being a writer and speaker, he was in partner and sales management for technology companies such as Sun Microsystems. Follow John on Twitter @soaringcities.

Jan 27, 2016 | Smart Cities | 0 comments

Environmental Disaster

Schools were closed and thousands evacuated from homes, escaping a 2.5 million pound per day methane leak. This leak near Aliso Canyon in the Los Angeles area is from a natural gas storage tank owned by the Southern California Gas Company, a Sempra subsidiary. After months, the utility giant, has been unable to seal the leak.

Because natural gas is at least 85 percent methane, this article discusses the methane danger. Methane (CH4) is a greenhouse gas that traps about 25 times the heat of CO2 over the lifetime of the gas in the atmosphere. The Aliso Canyon leak is likely to add over 2 million tons of carbon to the atmosphere. Details at Climate Progress.

There are about 340 similar methane storage facilities in California and 420 in the United States. Many facilities use former oil fields that once pumped oil out and now pump methane into caverns that can leak. Science Friday video interview of Rob Jackson.

Globally, we have a serious problem of methane leaks from storage tanks, pipelines in our cities, oil drilling, cattle, industrial agriculture, and landfills. Also, over $1 trillion has been spent on fracking for natural gas, Canadian tar sands, and for oil shale drilling, also sources of methane leaks.

Three percent well-to-wheels methane leakage is estimated by EDF for natural gas used to generate power, well above the threshold 1.6 percent to reduce greenhouse gas impacts lower than the coal power alternative.

Methane leaks are being discovered all over the planet, making the Paris Climate Treaty’s goal of limiting Earth’s warming to 2.0 degrees C nearly impossible to achieve.

Should we burn coal or natural gas?

Energy efficiency and renewable energy make this a false choice. Efficiency, solar and wind power are used at record levels. We don’t need either coal or natural gas. The U.S. is at a thirty-year low in coal use. Many methane fracking operations have ceased.

A few years ago, many felt that replacing old coal power plants with natural gas plants would reduce greenhouse gas (GHG) emissions. Methane was seen as a “bridge fuel” to clean energy.

Methane plants, if there are no leaks, produce about half the GHG of coal plants. No leaks is a big “if.” It has been a challenge to measure the total methane emissions (EDF Summary of 100 academic researchers). Now that we can better measure the methane leaks from fracking to storage to pipelines to power plants, replacing coal with natural gas appears to be accelerating destructive climate change.

How we can and must reduce methane emissions.

  • Methane is primarily used in power plants to generate electricity. Demand is being mitigated by energy efficiency, green and zero-net-energy buildings, wind and solar power.
  • Demand response: load shifts when pricing electricity low during off-peak and high during peak, resulting in fewer power plants.
  • European countries dependant on Russian natural gas need energy efficiency to move beyond Putin’s continued threats to turn off their gas supply.
  • From fracking to pipeline delivery to storage to use, methane leaks need to be monitored. A carbon price needs to be paid for all leaks.
  • Many leaks can be prevented. For example, when properly completed and managed, fracking appears to be feasible with low methane emissions. When money is saved, or short cuts taken, major leakage can occur. Industry self-reporting to the EPA has been shown to be dramatically low compared to actual measurement samples.
  • All-electric homes and buildings are part of the solution and use no methane for hot water, building heating and cooking.
  • Utilities are starting to replace their inefficient peaker methane plants with solar plus storage. For example, Southern California Edison (SCE), totally unrelated to the Sempra utility with the Aliso Hills disaster, is deploying several forms of large scale storage which can dispatch stored electricity during peak demand, just as a gas peaker would be used.
  • There are about 20 million natural gas (NG) vehicles on the road globally. Navigant Research expects 35 million NG vehicles to be sold from 2015 to 2025, many because of government regulations and incentives. It would be better if people drove efficient hybrid or electric cars; still better if we rode on hybrid diesel buses; much better if we used electric transit and rail.

We must leapfrog natural gas power plants with wind and solar power. The good news is that we have the cost-effective technology to do it. Solar, wind, and energy storage technologies are replacing aged fossil-fuel power plants. The cost of solar, wind and storage are rapidly falling. 100 percent Clean Energy Roadmap for 139 Countries (61-page PDF)

There is nothing “natural” about gas. It is primarily methane, a dangerous greenhouse gas. Methane is being made obsolete by efficiency, renewable energy and storage. We can leapfrog from gas guzzlers to electric transportation and from coal power to wind and solar power.

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Read more from the Meeting of the Minds Blog

Spotlighting innovations in urban sustainability and connected technology

The 7 Forces of Artificial Intelligence in Cities

The 7 Forces of Artificial Intelligence in Cities

AI has enormous potential to improve the lives of billions of people living in cities and facing a multitude of challenges. However, a blind focus on the technological issues is not sufficient. We are already starting to see a moderation of the technocentric view of algorithmic salvation in New York City, which is the first city in the world to appoint a chief algorithm officer.

There are 7 primary forces determining the success of AI, of which technology is just one. Cities must realize that AI is not the quick technological fix that vendors sell. Not everything will be improved by creating more algorithms and technical prowess. We need to develop a more holistic approach to implementing AI in cities in order to harness the immense potential. We need to create a way to consider each of the seven forces when cities plan for the use of AI.

I Am The River, The River is Me: Prioritizing Well-being Through Water Policy

I Am The River, The River is Me: Prioritizing Well-being Through Water Policy

In New Zealand, persistent, concentrated advocacy and legal cases advanced by Māori people are inspiring biocentric policies; that is, those which recognize that people and nature, including living and non-living elements, are part of an interconnected whole. Along the way, tribal leaders and advocates are successfully making the case that nature; whole systems of rivers, lakes, forests, mountains, and more, deserves legal standing to ensure its protection. An early legislative “win” granted personhood status to the Te Urewera forest in 2014, which codified into law these moving lines:

“Te Urewera is ancient and enduring, a fortress of nature, alive with history; its scenery is abundant with mystery, adventure, and remote beauty … Te Urewera has an identity in and of itself, inspiring people to commit to its care.”

The Te Urewera Act of 2014 did more than redefine how a forest would be managed, it pushed forward the practical expression of a new policy paradigm.

Made to Move Grants are Helping Cities Redesign for Active Transit

Made to Move Grants are Helping Cities Redesign for Active Transit

Can U.S. cities transform to overcome extreme car dependency?

In summer 2019, two values driven agencies came together to see if they could incentivize change in five cities with the Made to Move Grant program. This innovative, unique, and inspirational partnership between Degree and Blue Zones is awarding $100,000 dollars to each city to redesign their neighborhoods and city-centers for active, healthy lives. The program aims to create model practices and projects that gain the attention of other cities and inspire evolutionary changes to once again focus on places for people, and design accordingly.

Share This