Unnatural Gas

by Jan 27, 2016Smart Cities

John Addison

John Addison is the author of two books - Save Gas, Save the Planet that details the future of transportation and Revenue Rocket about technology partner strategy. CNET, Clean Fleet Report, and Meeting of the Minds have published over 300 of his articles. Prior to being a writer and speaker, he was in partner and sales management for technology companies such as Sun Microsystems. Follow John on Twitter @soaringcities.


Who will you meet?

Cities are innovating, companies are pivoting, and start-ups are growing. Like you, every urban practitioner has a remarkable story of insight and challenge from the past year.

Meet these peers and discuss the future of cities in the new Meeting of the Minds Executive Cohort Program. Replace boring virtual summits with facilitated, online, small-group discussions where you can make real connections with extraordinary, like-minded people.


 

Environmental Disaster

Schools were closed and thousands evacuated from homes, escaping a 2.5 million pound per day methane leak. This leak near Aliso Canyon in the Los Angeles area is from a natural gas storage tank owned by the Southern California Gas Company, a Sempra subsidiary. After months, the utility giant, has been unable to seal the leak.

Because natural gas is at least 85 percent methane, this article discusses the methane danger. Methane (CH4) is a greenhouse gas that traps about 25 times the heat of CO2 over the lifetime of the gas in the atmosphere. The Aliso Canyon leak is likely to add over 2 million tons of carbon to the atmosphere. Details at Climate Progress.

There are about 340 similar methane storage facilities in California and 420 in the United States. Many facilities use former oil fields that once pumped oil out and now pump methane into caverns that can leak. Science Friday video interview of Rob Jackson.

Globally, we have a serious problem of methane leaks from storage tanks, pipelines in our cities, oil drilling, cattle, industrial agriculture, and landfills. Also, over $1 trillion has been spent on fracking for natural gas, Canadian tar sands, and for oil shale drilling, also sources of methane leaks.

Three percent well-to-wheels methane leakage is estimated by EDF for natural gas used to generate power, well above the threshold 1.6 percent to reduce greenhouse gas impacts lower than the coal power alternative.

Methane leaks are being discovered all over the planet, making the Paris Climate Treaty’s goal of limiting Earth’s warming to 2.0 degrees C nearly impossible to achieve.

Should we burn coal or natural gas?

Energy efficiency and renewable energy make this a false choice. Efficiency, solar and wind power are used at record levels. We don’t need either coal or natural gas. The U.S. is at a thirty-year low in coal use. Many methane fracking operations have ceased.

A few years ago, many felt that replacing old coal power plants with natural gas plants would reduce greenhouse gas (GHG) emissions. Methane was seen as a “bridge fuel” to clean energy.

Methane plants, if there are no leaks, produce about half the GHG of coal plants. No leaks is a big “if.” It has been a challenge to measure the total methane emissions (EDF Summary of 100 academic researchers). Now that we can better measure the methane leaks from fracking to storage to pipelines to power plants, replacing coal with natural gas appears to be accelerating destructive climate change.

How we can and must reduce methane emissions.

  • Methane is primarily used in power plants to generate electricity. Demand is being mitigated by energy efficiency, green and zero-net-energy buildings, wind and solar power.
  • Demand response: load shifts when pricing electricity low during off-peak and high during peak, resulting in fewer power plants.
  • European countries dependant on Russian natural gas need energy efficiency to move beyond Putin’s continued threats to turn off their gas supply.
  • From fracking to pipeline delivery to storage to use, methane leaks need to be monitored. A carbon price needs to be paid for all leaks.
  • Many leaks can be prevented. For example, when properly completed and managed, fracking appears to be feasible with low methane emissions. When money is saved, or short cuts taken, major leakage can occur. Industry self-reporting to the EPA has been shown to be dramatically low compared to actual measurement samples.
  • All-electric homes and buildings are part of the solution and use no methane for hot water, building heating and cooking.
  • Utilities are starting to replace their inefficient peaker methane plants with solar plus storage. For example, Southern California Edison (SCE), totally unrelated to the Sempra utility with the Aliso Hills disaster, is deploying several forms of large scale storage which can dispatch stored electricity during peak demand, just as a gas peaker would be used.
  • There are about 20 million natural gas (NG) vehicles on the road globally. Navigant Research expects 35 million NG vehicles to be sold from 2015 to 2025, many because of government regulations and incentives. It would be better if people drove efficient hybrid or electric cars; still better if we rode on hybrid diesel buses; much better if we used electric transit and rail.

We must leapfrog natural gas power plants with wind and solar power. The good news is that we have the cost-effective technology to do it. Solar, wind, and energy storage technologies are replacing aged fossil-fuel power plants. The cost of solar, wind and storage are rapidly falling. 100 percent Clean Energy Roadmap for 139 Countries (61-page PDF)

There is nothing “natural” about gas. It is primarily methane, a dangerous greenhouse gas. Methane is being made obsolete by efficiency, renewable energy and storage. We can leapfrog from gas guzzlers to electric transportation and from coal power to wind and solar power.

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Middle-Mile Networks: The Middleman of Internet Connectivity

Middle-Mile Networks: The Middleman of Internet Connectivity

The development of public, open-access middle mile infrastructure can expand internet networks closer to unserved and underserved communities while offering equal opportunity for ISPs to link cost effectively to last mile infrastructure. This strategy would connect more Americans to high-speed internet while also driving down prices by increasing competition among local ISPs.

In addition to potentially helping narrow the digital divide, middle mile infrastructure would also provide backup options for networks if one connection pathway fails, and it would help support regional economic development by connecting businesses.

Wildfire Risk Reduction: Connecting the Dots

Wildfire Risk Reduction: Connecting the Dots

One of the most visceral manifestations of the combined problems of urbanization and climate change are the enormous wildfires that engulf areas of the American West. Fire behavior itself is now changing.  Over 120 years of well-intentioned fire suppression have created huge reserves of fuel which, when combined with warmer temperatures and drought-dried landscapes, create unstoppable fires that spread with extreme speed, jump fire-breaks, level entire towns, take lives and destroy hundreds of thousands of acres, even in landscapes that are conditioned to employ fire as part of their reproductive cycle.

ARISE-US recently held a very successful symposium, “Wildfire Risk Reduction – Connecting the Dots”  for wildfire stakeholders – insurers, US Forest Service, engineers, fire awareness NGOs and others – to discuss the issues and their possible solutions.  This article sets out some of the major points to emerge.

Innovating Our Way Out of Crisis

Innovating Our Way Out of Crisis

Whether deep freezes in Texas, wildfires in California, hurricanes along the Gulf Coast, or any other calamity, our innovations today will build the reliable, resilient, equitable, and prosperous grid tomorrow. Innovation, in short, combines the dream of what’s possible with the pragmatism of what’s practical. That’s the big-idea, hard-reality approach that helped transform Texas into the world’s energy powerhouse — from oil and gas to zero-emissions wind, sun, and, soon, geothermal.

It’s time to make the production and consumption of energy faster, smarter, cleaner, more resilient, and more efficient. Business leaders, political leaders, the energy sector, and savvy citizens have the power to put investment and practices in place that support a robust energy innovation ecosystem. So, saddle up.

The Future of Cities

Mayors, planners, futurists, technologists, executives and advocates — hundreds of urban thought leaders publish on Meeting of the Minds. Sign up to follow the future of cities.

You have Successfully Subscribed!

Wait! Before You Leave —

Wait! Before You Leave —

Subscribe to receive updates on the Executive Cohort Program!

You have Successfully Subscribed!

Share This