The complexity of building energy consumption

By Paolo Gaudiano

Paolo Gaudiano is President and CTO of Icosystem, where he enjoys solving challenging business and technology problems for clients, while striving to ensure that Icosystem continues to be a stimulating, productive and fun company.

Apr 29, 2013 | Smart Cities | 0 comments

It is estimated that buildings contribute 20-30% of energy use in the United States at an annual cost of over $100B. Buildings also contribute an estimated 35-40% of all US CO2 emissions resulting from building energy consumption. Any effort to decrease building energy consumption can thus have a substantial economic and environmental impact.

Much of the effort invested in building energy efficiency and conservation is focused on analyzing or simulating individual physical systems within a building, to help designers understand, e.g., what savings could result by replacing standard lights with high-efficiency fluorescents, or by using light-colored paint on a building’s roof.  Typical approaches combine simulating the actual physical properties of building systems, and statistical data based on historical usage. However, the complex interactions between building systems and the environment make accurate estimations difficult.

The complexity of this problem increases dramatically when occupant behavior is included. Consider a simple hypothetical example: a building consumes $1M per year in electricity for lighting. Analysis might show that, given current use patterns, installing high-efficiency lighting would cost $1M and result in 50% electricity savings – $500,000 per year – which would lead to break-even in two years. However, suppose that the building owner invests in a campaign to increase awareness, leading to a 25% reduction in how much lighting is used by occupants, or an annual electricity cost of $750,000. The same high-efficiency lighting would now only save $375,000 per year, and would thus take nearly three years to reach break-even.

Even more complex interactions take place when one starts to consider all building systems – such as heating and cooling, appliances and data networks – and other aspects of occupant behavior which impact demand and usage patterns. For instance, improving climate control might encourage occupants to spend more time inside the building, leading to an increase in energy consumption (this is sometimes referred to as the rebound effect).

This type of emergent behavior is a hallmark of complex systems, systems whose overall behavior is determined in sometimes unpredictable ways by the elements of the system interacting with one another and with the environment. We can see examples of human-made complex systems all around us: traffic jams, stock market fluctuations and even sports team performance cannot be predicted even when we know well how each individual is behaving within the system. Similar principles are at work in natural systems, including for examples the flocking behavior of birds, the schooling behavior of fish, of the ability of social insects such as termites to build incredibly complex structures – without the benefit of blueprints and architects.

Traditional analytical techniques are ill-equipped to manage complex systems, whose behavior often exhibits sharp nonlinearities such as tipping points. In recent years, researchers at academic centers such as the Santa Fe Institute, as well as commercial entities such as Icosystem, have successfully studied and managed complex systems using Agent-Based Simulation (ABS), a simulation technique that captures the behavior of systems from the bottom-up. While ABS was initially studied primarily in academic settings, recently ABS has been used to solve a variety of complex business and technology problems in many industry sectors and problem areas.

ABS replicates in software the behavior of individuals, as well as their interactions with the environment and with other individuals. ABS then shows how overall system behavior emerges from these interactions, replicating complex system behaviors that cannot be captured with other analytical techniques and that are often unexpected or counter-intuitive.

Traffic is a classical example of a problem that is best captured with ABS. In particular, traffic jams are an example of an emergent behavior that seems almost paradoxical: each driver is trying to reach his or her destination, and yet traffic jams form even when there are no external factors to cause them. An ABS developed with the NetLogo software can be used to show how simple driver behaviors can lead to traffic jams. In the simulation, drivers accelerate when there is nobody in front of them, and they decelerate when they approach a car ahead. Using these simple rules it is possible to replicate traffic jams that looks surprisingly like traffic jams observed under real conditions.

In the context of building energy efficiency, ABS could be used to understand how occupant behavior impacts energy consumption, by simulating occupants going about their normal daily activities and reacting to their environment, e.g., turning on lights when it gets dark (and sometimes forgetting to turn them off), opening windows or turning on air conditioning when it gets warm, using different types of appliances, and so on. More importantly, an ABS could be used to estimate the impact of various initiatives, including changes to the building itself as well as communications campaigns to encourage energy conservation. This type of quantitative approach could be beneficial in understanding how best to allocate resources to improve energy efficiency.

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Encouraging Civic Engagement with What Matters Most to Residents

Encouraging Civic Engagement with What Matters Most to Residents

OurStreets origins are rooted in capturing latent sentiment on social media and converting it to standardized data. It all started in July 2018, when OurStreets co-founder, Daniel Schep, was inspired by the #bikeDC community tweeting photos of cars blocking bike lanes, and built the @HowsMyDrivingDC Twitter bot. The bot used license plate info to produce a screenshot of the vehicle’s outstanding citations from the DC DMV website.

Fast forward to March 2020, and D.C. Department of Public Works asking if we could repurpose OurStreets to crowdsource the availability of essential supplies during the COVID-19 crisis. Knowing how quickly we needed to move in order to be effective, we set out to make a new OurStreets functionality viable nationwide.

How Urban Industry Can Contribute Green Solutions for COVID-Related Health Disparities

How Urban Industry Can Contribute Green Solutions for COVID-Related Health Disparities

The best nature-based solutions on urban industrial lands are those that are part of a corporate citizenship or conservation strategy like DTE’s or Phillips66. By integrating efforts such as tree plantings, restorations, or pollinator gardens into a larger strategy, companies begin to mainstream biodiversity into their operations. When they crosswalk the effort to other CSR goals like employee engagement, community relations, and/or workforce development, like the CommuniTree initiative, the projects become more resilient.

Air quality in urban residential communities near industrial facilities will not be improved by nature alone. But nature can contribute to the solution, and while doing so, bring benefits including recreation, education, and an increased sense of community pride. As one tool to combat disparate societal outcomes, nature is accessible, affordable and has few, if any, downsides.

Crisis funding for public parks

Crisis funding for public parks

I spoke last week to Adrian Benepe, former commissioner for the NYC Parks Department and currently the Senior Vice President and Director of National Programs at The Trust for Public Land.

We discussed a lot of things – the increased use of parks in the era of COVID-19, the role parks have historically played – and currently play – in citizens’ first amendment right to free speech and protests, access & equity for underserved communities, the coming budget shortfalls and how they might play out in park systems.

I wanted to pull out the discussion we had about funding for parks and share Adrian’s thoughts with all of you, as I think it will be most timely and valuable as we move forward with new budgets and new realities.

Subscribe to Our Weekly Newsletter

Sign up for our email list to receive resources and invites related to sustainability, equity, and technology in cities!

You have Successfully Subscribed!

Share This