The complexity of building energy consumption

by Apr 29, 2013Smart Cities

Paolo Gaudiano

Paolo Gaudiano is President and CTO of Icosystem, where he enjoys solving challenging business and technology problems for clients, while striving to ensure that Icosystem continues to be a stimulating, productive and fun company.


Who will you meet?

Cities are innovating, companies are pivoting, and start-ups are growing. Like you, every urban practitioner has a remarkable story of insight and challenge from the past year.

Meet these peers and discuss the future of cities in the new Meeting of the Minds Executive Cohort Program. Replace boring virtual summits with facilitated, online, small-group discussions where you can make real connections with extraordinary, like-minded people.


 

It is estimated that buildings contribute 20-30% of energy use in the United States at an annual cost of over $100B. Buildings also contribute an estimated 35-40% of all US CO2 emissions resulting from building energy consumption. Any effort to decrease building energy consumption can thus have a substantial economic and environmental impact.

Much of the effort invested in building energy efficiency and conservation is focused on analyzing or simulating individual physical systems within a building, to help designers understand, e.g., what savings could result by replacing standard lights with high-efficiency fluorescents, or by using light-colored paint on a building’s roof.  Typical approaches combine simulating the actual physical properties of building systems, and statistical data based on historical usage. However, the complex interactions between building systems and the environment make accurate estimations difficult.

The complexity of this problem increases dramatically when occupant behavior is included. Consider a simple hypothetical example: a building consumes $1M per year in electricity for lighting. Analysis might show that, given current use patterns, installing high-efficiency lighting would cost $1M and result in 50% electricity savings – $500,000 per year – which would lead to break-even in two years. However, suppose that the building owner invests in a campaign to increase awareness, leading to a 25% reduction in how much lighting is used by occupants, or an annual electricity cost of $750,000. The same high-efficiency lighting would now only save $375,000 per year, and would thus take nearly three years to reach break-even.

Even more complex interactions take place when one starts to consider all building systems – such as heating and cooling, appliances and data networks – and other aspects of occupant behavior which impact demand and usage patterns. For instance, improving climate control might encourage occupants to spend more time inside the building, leading to an increase in energy consumption (this is sometimes referred to as the rebound effect).

This type of emergent behavior is a hallmark of complex systems, systems whose overall behavior is determined in sometimes unpredictable ways by the elements of the system interacting with one another and with the environment. We can see examples of human-made complex systems all around us: traffic jams, stock market fluctuations and even sports team performance cannot be predicted even when we know well how each individual is behaving within the system. Similar principles are at work in natural systems, including for examples the flocking behavior of birds, the schooling behavior of fish, of the ability of social insects such as termites to build incredibly complex structures – without the benefit of blueprints and architects.

Traditional analytical techniques are ill-equipped to manage complex systems, whose behavior often exhibits sharp nonlinearities such as tipping points. In recent years, researchers at academic centers such as the Santa Fe Institute, as well as commercial entities such as Icosystem, have successfully studied and managed complex systems using Agent-Based Simulation (ABS), a simulation technique that captures the behavior of systems from the bottom-up. While ABS was initially studied primarily in academic settings, recently ABS has been used to solve a variety of complex business and technology problems in many industry sectors and problem areas.

ABS replicates in software the behavior of individuals, as well as their interactions with the environment and with other individuals. ABS then shows how overall system behavior emerges from these interactions, replicating complex system behaviors that cannot be captured with other analytical techniques and that are often unexpected or counter-intuitive.

Traffic is a classical example of a problem that is best captured with ABS. In particular, traffic jams are an example of an emergent behavior that seems almost paradoxical: each driver is trying to reach his or her destination, and yet traffic jams form even when there are no external factors to cause them. An ABS developed with the NetLogo software can be used to show how simple driver behaviors can lead to traffic jams. In the simulation, drivers accelerate when there is nobody in front of them, and they decelerate when they approach a car ahead. Using these simple rules it is possible to replicate traffic jams that looks surprisingly like traffic jams observed under real conditions.

In the context of building energy efficiency, ABS could be used to understand how occupant behavior impacts energy consumption, by simulating occupants going about their normal daily activities and reacting to their environment, e.g., turning on lights when it gets dark (and sometimes forgetting to turn them off), opening windows or turning on air conditioning when it gets warm, using different types of appliances, and so on. More importantly, an ABS could be used to estimate the impact of various initiatives, including changes to the building itself as well as communications campaigns to encourage energy conservation. This type of quantitative approach could be beneficial in understanding how best to allocate resources to improve energy efficiency.

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published.

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Middle-Mile Networks: The Middleman of Internet Connectivity

Middle-Mile Networks: The Middleman of Internet Connectivity

The development of public, open-access middle mile infrastructure can expand internet networks closer to unserved and underserved communities while offering equal opportunity for ISPs to link cost effectively to last mile infrastructure. This strategy would connect more Americans to high-speed internet while also driving down prices by increasing competition among local ISPs.

In addition to potentially helping narrow the digital divide, middle mile infrastructure would also provide backup options for networks if one connection pathway fails, and it would help support regional economic development by connecting businesses.

Wildfire Risk Reduction: Connecting the Dots

Wildfire Risk Reduction: Connecting the Dots

One of the most visceral manifestations of the combined problems of urbanization and climate change are the enormous wildfires that engulf areas of the American West. Fire behavior itself is now changing.  Over 120 years of well-intentioned fire suppression have created huge reserves of fuel which, when combined with warmer temperatures and drought-dried landscapes, create unstoppable fires that spread with extreme speed, jump fire-breaks, level entire towns, take lives and destroy hundreds of thousands of acres, even in landscapes that are conditioned to employ fire as part of their reproductive cycle.

ARISE-US recently held a very successful symposium, “Wildfire Risk Reduction – Connecting the Dots”  for wildfire stakeholders – insurers, US Forest Service, engineers, fire awareness NGOs and others – to discuss the issues and their possible solutions.  This article sets out some of the major points to emerge.

Innovating Our Way Out of Crisis

Innovating Our Way Out of Crisis

Whether deep freezes in Texas, wildfires in California, hurricanes along the Gulf Coast, or any other calamity, our innovations today will build the reliable, resilient, equitable, and prosperous grid tomorrow. Innovation, in short, combines the dream of what’s possible with the pragmatism of what’s practical. That’s the big-idea, hard-reality approach that helped transform Texas into the world’s energy powerhouse — from oil and gas to zero-emissions wind, sun, and, soon, geothermal.

It’s time to make the production and consumption of energy faster, smarter, cleaner, more resilient, and more efficient. Business leaders, political leaders, the energy sector, and savvy citizens have the power to put investment and practices in place that support a robust energy innovation ecosystem. So, saddle up.

The Future of Cities

Mayors, planners, futurists, technologists, executives and advocates — hundreds of urban thought leaders publish on Meeting of the Minds. Sign up to follow the future of cities.

You have Successfully Subscribed!

Wait! Before You Leave —

Wait! Before You Leave —

Subscribe to receive updates on the Executive Cohort Program!

You have Successfully Subscribed!

Share This