Smart Systems in the Second Machine Age

By Scott Stallard

Scott Stallard is Director, Smart Integrated Infrastructure Analytics at global engineering firm, Black & Veatch. Join Scott at the Meeting of the Minds Conference to learn more about smart systems.


Who will you meet?

Cities are innovating, companies are pivoting, and start-ups are growing. Like you, every urban practitioner has a remarkable story of insight and challenge from the past year.

Meet these peers and discuss the future of cities in the new Meeting of the Minds Executive Cohort Program. Replace boring virtual summits with facilitated, online, small-group discussions where you can make real connections with extraordinary, like-minded people.


 

This post is part of a series on Smart Cities from Black and Veatch. For more, visit the series archive.

Previous blog posts in this series have explored the people and processes that are coming together to make the smart city vision a reality. It will not be shocking to those who know me that I instead chose to focus on technology. For more than 30 years at Black & Veatch, I have been working with talented teams to solve complex problems using innovative technology. We have seen a lot of change, but nothing that comes close to the speed and scale of technological advancement that is happening today.

I like to think about this transformation in the context of incremental innovation, a pioneering concept by Erik Brynjolfsson. Like the Industrial Revolution, an economic and social inflection point is taking place because of technology – but this time it’s digital technology. This is all playing out in the smart city arena as combinations of new and traditional technologies are completely redefining what is possible and creating many new opportunities and challenges across all city systems.

The Distributed Energy Future

The watchword in energy is distributed. Our big, centralized electric power systems are transforming as distributed energy resources (DERs) plug into the mainstream market. As noted in this whitepaper, the U.S. is shifting dramatically toward an energy framework where solar photovoltaic (PV) installations, wind, electric vehicle (EV) charging stations, demand response, energy storage, microgrids and combined heat and power generation are major features.

This distributed shift is enabling energy consumers to become energy producers, placing more control into the hands of the many. It opens up exciting new avenues for utilities and customers to work together to advance green energy and diversify the range of assets that can provide energy and grid services. In the smart city context, DERs provide the foundation for collaborative, progressive and yes, transformational, ways to produce, manage, and distribute energy.

Sounds ideal, right? Well, like most emerging technologies, these DERs also present challenges. Despite decentralization, DERs are still part of a much larger system that needs to be coordinated in order to improve, rather that threaten, energy resilience. In addition, the industry needs to change conventional electric production and distribution planning processes to support fully the complex demands of DERs. The design of legacy distribution infrastructure does not support the two-way power flow required to take advantage of some of these new technologies. This technology transformation urges electric utilities and cities to understand the disruptive impacts on the grid.

Take a minute to consider the magnitude of this in two dimensions—the new technologies and the operational complexity of managing the distributed system. For example, Hawaii plans to have 100% of its electricity coming from renewable energy resources by the year 2045. The amount of renewables required to build this energy future presents a large enough challenge. However, the challenge mounts when we factor in a complex mix of customer-owned generation, firm biofuel generation, utility-scale renewables, energy storage, and distribution assets, as well as the need to manage vastly distributed systems, with customer assets hidden behind the meter. Advanced tools and programs like those below will help us manage the intricacy:

  • We must track system power distribution and quality via advanced distribution management systems to ensure that overall system requirements are managed.
  • Demand response programs must scale to consider the wide range of customer DERs.
  • Advanced modeling and analytics can pinpoint optimal DER locations and needed upgrades to support high DER penetration.
  • Analytics and modeling can guide exploration of a range of technical, economic, market and behavioral scenarios to inform the renewables roadmap.

I will explore the effects of new technologies at the upcoming Meeting of The Minds conference, alongside Rich Barone from Hawaiian Electric and other technology leaders. As you will learn, the scale and speed of incremental innovation are enabling a very different and exciting future.

Managing for Water Resilience

For a growing number of communities, smart water is about resilience. Our water systems must be resilient enough to endure floods, droughts and human threats while reliably supplying clean water and managing stormwater and wastewater needs. Advanced water management technologies can give utilities and cities an edge by helping to address these diverse resiliency needs in both day-to-day circumstances and in periods of duress.

In terms of technology, the power of incremental innovation shines brightly here. The combination of new sensor technology, massive data sets, predictive analytics, and cloud computing brings water systems to life, enables adaptability, and guides appropriate actions.

For example, a risk-based analytics framework can identify and evaluate options to enhance water system resilience against events such as flood, drought or terrorism. These smart tools help water utilities simulate disruptions on a grand scale and identify the best means to manage the situation across planning, design, and operational perspectives.

Using the same smart tools, utilities can compare project portfolios to improve raw water storage, transfer and network interconnections. The results help prioritize improvement options and focus capital investments on the initiatives that produce the highest benefits and lowest risks for varying spending levels.

In the context of smart cities, resiliency also means the ability to manage water needs in increasingly larger, denser urban areas where the stakes get higher as populations rise. In these areas, the needs are more complex, green space is limited, and the costs associated with disruption are magnified.

Street Side Communications

As a bite-sized beginning to smart city progress, cities are adding sensors and a range of communications networks to their street-side assets. To complement community-scale broadband networks, Wi-Fi, small cell, and distributed antenna systems (DAS) are being used to add targeted telecommunications capacity in key areas. Through this technology infusion, streetlight poles, phone booths, bus shelters, and electric vehicle (EV) charging kiosks become multi-tasking technology platforms that connect people with the city, invigorate urban spaces, boost efficiency, enhance public safety, and drive future connectivity.

Smart street furniture provides an immediate array of benefits like free Wi-Fi, “way finding” and public transit information, community announcements and mobile charging. They also enhance public safety via video cameras, 911 callboxes, public safety alerts, lighting control, gunshot detection and a range of environmental sensors, which help city staff better understand and manage events.

Kiosks can even provide revenue streams and streetlights can reduce city expenditures through energy and maintenance savings. However, cities will see the true value of smart street side assets over time. As cities achieve greater levels of connectivity, they can use the communications infrastructure established for smart street furniture to further connect city systems, allowing electric, gas, water and wastewater utilities to work in harmony with other systems such as transportation and emergency response—the essence of a smart city.

A System of Systems

Time and space prevent me from examining all of the critical systems that will undergo major upgrades with the infusion of smart technology. Water and energy are great examples of how leveraging technology can achieve dramatic improvements in individual system performance and how to manage and coordinate actions across very distributed and complex situations. But, the story does not stop there—it gets really interesting when smart systems interact with other smart systems!

Imagine a city that can manage all critical functions collectively. Where city services naturally expand, contract, and shift focus as needs change. Imagine a reality where systems share an awareness of emerging situations and react by finding alternative paths and best options for optimal response.

This Smart City technology revolution is just starting. We are seeing it first within specific “smarter” systems and in the rapid advances in coordination across distributed devices. The next wave of innovation will feature systems working together to enhance value and speed, powered by the Second Machine Age.

For more insight into smart city trends, review Black & Veatch’s Strategic Directions Smart City/Smart Utility Report (2016).

This blog post is part of a series. Read the next post: Citizens: Smart Cities Best Partners

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Taking a Look into Our Adaptation Blind Spots

Taking a Look into Our Adaptation Blind Spots

In my business, we’d rather not be right. What gets a climate change expert out of bed in the morning is the desire to provide decision-makers with the best available science, and at the end of the day we go to bed hoping things won’t actually get as bad as our science tells us. That’s true whether you’re a physical or a social scientist.

Well, I’m one of the latter and Meeting of the Minds thought it would be valuable to republish an article I penned in January 2020. In that ancient past, only the most studious of news observers had heard of a virus in Wuhan, China, that was causing a lethal disease. Two months later we were in lockdown, all over the world, and while things have improved a lot in the US since November 2020, in many cities and nations around the world this is not the case. India is living through a COVID nightmare of untold proportions as we speak, and many nations have gone through wave after wave of this pandemic. The end is not in sight. It is not over. Not by a longshot.

And while the pandemic is raging, sea level continues to rise, heatwaves are killing people in one hemisphere or the other, droughts have devastated farmers, floods sent people fleeing to disaster shelters that are not the save havens we once thought them to be, wildfires consumed forests and all too many homes, and emissions dipped temporarily only to shoot up again as we try to go “back to normal.”

So, I’ll say another one of those things I wish I’ll be wrong about, but probably won’t: there is no “back to normal.” Not with climate change in an interdependent world.

Bleutech Park: Vegas’ New Eco Entertainment Park

Bleutech Park: Vegas’ New Eco Entertainment Park

I caught up with Steph Stoppenhagen from Black & Veatch the other day about their work on critical infrastructure in Las Vegas. In particular, we talked about the new Bleutech Park project which touts itself as an eco-entertainment park. They are deploying new technologies and materials to integrate water, energy, mobility, housing, and climate-smart solutions as they anticipate full-time residents and park visitors. Hear more from Steph about this new $7.5B high-tech biome in the desert.

Urban Simulation Tech Models Effects of Shared Mobility in Reducing Congestion

Urban Simulation Tech Models Effects of Shared Mobility in Reducing Congestion

Planning for new, shared modes of transit that will rival private vehicles in access and convenience requires a paradigm shift in the planning process. Rather than using traditional methods, we need to capture individual behavior while interacting with the systems in questions. An increasing number of studies show that combining agent-based simulation with activity-based travel demand modeling is a good approach. This approach creates a digital twin of the population of the city, with similar characteristics as their real-world counterparts. These synthetic individuals have activities to perform through the course of the day, and need to make mobility decisions to travel between activity locations. The entire transportation infrastructure of the city is replicated on a virtual platform that simulates real life scenarios. If individual behavior and the governing laws of the digital reality are accurately reproduced, large-scale mobility demand emerges from the bottom-up, reflecting the real-world incidences.

The Future of Cities

Mayors, planners, futurists, technologists, executives and advocates — hundreds of urban thought leaders publish on Meeting of the Minds. Sign up below to follow the future of cities.

You have Successfully Subscribed!

Wait! Before You Leave —

Wait! Before You Leave —

Subscribe to receive updates on the Executive Cohort Program!

You have Successfully Subscribed!

Share This