Scalable Water Management Solutions for Developed & Developing Cities
Who will you meet?
Cities are innovating, companies are pivoting, and start-ups are growing. Like you, every urban practitioner has a remarkable story of insight and challenge from the past year.
Meet these peers and discuss the future of cities in the new Meeting of the Minds Executive Cohort Program. Replace boring virtual summits with facilitated, online, small-group discussions where you can make real connections with extraordinary, like-minded people.
The growth of urban settlements is subject to a range of factors influenced by demographic, economic, political, environmental, cultural, and social factors. Weather variability, or climate change, has recently risen up this list. These two factors: climate change and urban population growth, are dramatically affecting urban water management. On one hand, growing populations increase urban water demand and on the other, climate change has increased water variability (volume, distribution, timing and quality).
Parallel to these factors, urban water management has a few problems of its own. Global water infrastructure, whether for water supply, storm or waste water management; is old and was built for the demand of cities 30 to 100 years ago. It is ill-equipped to handle the current challenges of today, including population growth and climate change. The water sector is conservative, focused on public health, reliable service, and compliance with regulations, with good reason. However, traditional centralized, networked systems of drinking water supply, storm water drainage, and wastewater disposal are not sufficient. In reality, water is demanded, and storm and waste water are generated in decentralized, disorganized locations.
Citizen concern is growing as they experience first-hand that growing populations and climate change have effects on their water. Water security, flooding, healthy water bodies, affordability of services, etc. are all trending stories in the news these days.
How will cities adapt? Reframe. Develop new responses.
Instead of sourcing water from sources farther away or deeper underground, what if we asked how to reduce our need? How do we reuse what we have, or recycle what we’ve used? Water management philosophy in cities has to evolve to include other solutions beyond new traditional infrastructure that very expensive to build and maintain and takes time to construct.
Changing the paradigm from traditional technocratic solutions to those that are more agile, adaptable, and affordable is the key for the future. Although the water sector is conservative by nature, it needs innovation to challenge the status quo and that can overcome the constraints of existing infrastructure, governance, and prior decisions. It’s easy to put blame on governments, which are working hard and dealing at high volume to supply the demand of constituents. Citizens also must change their habits and tastes in order to make change work.
Below, I review two water innovations that reduce, reuse, and recycle urban water resources. By no means are these innovations an exhaustive list, rather they are innovations that may influence and impact urban water supply management.
Reproducing Urban Supply
Water for human consumptive uses, like drinking, cooking, bathing etc. are the major concerns for urban areas. Globally, about 2.5 percent of the water in the world is freshwater, and only 32 percent of that is accessible. Although there is enough water in the world for everyone, the distribution of the resource is the one of most concern. Moreover, growing cities get thirsty fast, requiring exponentially more water for their people and their needs. How to quench the growing thirst without getting more water? The innovations below range from small to large scale solutions that create more water.
Water from the Sun
Water is all around us, even though we cannot see it. On sticky summer days we can feel it in the form of humidity or early mornings we can see it as fog. Science has long searched for ways to harvest atmospheric moisture but each solution had problems. Dehumidifiers consume lots of power, wick nets do not collect enough water, and both perform optimally in humid environments. The main question: how to develop a water harvesting solution that consumes low amounts of energy, produces enough volume of drinkable water, and that works in an arid environment.
The answer was found by combining material science, the understanding of dew point, and solar power into the creation of a solar water collector. Two similar approaches were developed in 2017 but the principles are the same: air is allowed to flow through the device, special nano-materials are used to collect the water molecules in that air, a temperature change is created to allow for condensation. The water is then collected. The energy and the aridity problem are solved at the same time through the use of solar power. The products that are in development can generate about 3 liters of water per day, and that level of water production is scalable. The science fiction of pulling water out of thin, dry air is fast becoming fact.
Water from our Waste
The second innovation in reproducing water supply may not be as appetizing as the previous: water from waste. If you are like me and enjoy watching survivor reality shows, we have seen the star drink “water” from animal dung or even consume their own urine. Although it turns our stomach, we accept it as a form of survival. But can we accept something similar for our daily water intake? Reclaimed waste water is not a new concept in the field of engineering, but it is something that is hard to swallow conceptually.
Countries like Namibia, one of the driest on earth, have been doing this for decades. Before the mid-1900’s, the capital city of Windhoek sourced local springs for drinking water supply. When these springs dried up, combined with years of drought, the most viable way to keep with demand was wastewater reuse.
The process is natural; bacteria aid in the processing of human waste, while at the same time draw out moisture, doing what nature would do normally, just faster. Of course, the water is treated before it is recirculated into the water supply system.
Bill Gates was recently recorded drinking a glass of “poop water” to demonstrate the product of the Omniprocessor, a project funded by the Gates Foundation. It is the evolution of wastewater reuse. The machine is fed sludge which is then boiled. The water vapor is the first byproduct that is turned into drinking water. The dried sludge is the second byproduct which is burned to fuel the machine as well as produce excess energy to feed a power grid. The burned ash is a third byproduct that can be disposed of without any harmful issue. The machine is a closed system that is more modular than a wastewater facility, and affordable enough for developing countries.
Each of these solutions also provides added value. The solar water collector and Omniprocesser both generate their own power, which lower the impacts on the environment. Solar water can be scaled up to provide more water in arid areas without additional infrastructure. Water from waste embraces the 1980’s concept of Reduce, Reuse, and Recycle for human waste, and also mitigates the impact of wastewater treatment.
Urban water management strategies have been conservative for the last century, focusing on capital-intensive infrastructure solutions for water supply. In the years to come, urban water systems will need to integrate existing infrastructure with innovations in providing hybrid solutions that are agile, adaptable, and affordable. Although change rarely happens unless there is some catastrophic event, the confluence of population growth and climate change have managed to force cities and their respective water authorities to change the paradigm. Solar water collectors and water from waste are two such innovations that are agile, adaptive, and affordable for the developed and developing world to supplement the growing demand for water. However, we should always be mindful of how much we use versus how much we need.
Discussion
Leave your comment below, or reply to others.
Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.
1 Comment
Submit a Comment
Read more from MeetingoftheMinds.org
Spotlighting innovations in urban sustainability and connected technology
Middle-Mile Networks: The Middleman of Internet Connectivity
The development of public, open-access middle mile infrastructure can expand internet networks closer to unserved and underserved communities while offering equal opportunity for ISPs to link cost effectively to last mile infrastructure. This strategy would connect more Americans to high-speed internet while also driving down prices by increasing competition among local ISPs.
In addition to potentially helping narrow the digital divide, middle mile infrastructure would also provide backup options for networks if one connection pathway fails, and it would help support regional economic development by connecting businesses.
Wildfire Risk Reduction: Connecting the Dots
One of the most visceral manifestations of the combined problems of urbanization and climate change are the enormous wildfires that engulf areas of the American West. Fire behavior itself is now changing. Over 120 years of well-intentioned fire suppression have created huge reserves of fuel which, when combined with warmer temperatures and drought-dried landscapes, create unstoppable fires that spread with extreme speed, jump fire-breaks, level entire towns, take lives and destroy hundreds of thousands of acres, even in landscapes that are conditioned to employ fire as part of their reproductive cycle.
ARISE-US recently held a very successful symposium, “Wildfire Risk Reduction – Connecting the Dots” for wildfire stakeholders – insurers, US Forest Service, engineers, fire awareness NGOs and others – to discuss the issues and their possible solutions. This article sets out some of the major points to emerge.
Innovating Our Way Out of Crisis
Whether deep freezes in Texas, wildfires in California, hurricanes along the Gulf Coast, or any other calamity, our innovations today will build the reliable, resilient, equitable, and prosperous grid tomorrow. Innovation, in short, combines the dream of what’s possible with the pragmatism of what’s practical. That’s the big-idea, hard-reality approach that helped transform Texas into the world’s energy powerhouse — from oil and gas to zero-emissions wind, sun, and, soon, geothermal.
It’s time to make the production and consumption of energy faster, smarter, cleaner, more resilient, and more efficient. Business leaders, political leaders, the energy sector, and savvy citizens have the power to put investment and practices in place that support a robust energy innovation ecosystem. So, saddle up.
Reducing use comes at a cost. Using industrial processes to try to make pathogen rich water into pathogen reduced water is not a complete solution. You run out of this “new” fresh water very quickly and you spent all the money. Obsessing over your poop for some reason is attractive to Bill yet it goes against biology in the event of a single o-ring slip. Conservation has a hard limit of 100% when the answer must be in the 500% range for most major growth urbanized locations. The Mississippi River outflows 511 million acre feet every year conservation or not. Texas from its vast reservoirs evaporates more water than is used. Moving water from rain-soaked regions to desert is lower cost and pathogens are eliminated cheaply. Using the sun energy for the movement does make sense since deserts are the focus and they have a lot of unfiltered sunshine. Closed containers moving 51.75 million gallons per day per pair of guideways would be able to go after the water reported in this article. 68% of fresh water on the planet instead of the 32% we now are stewards of.