Reinventing Energy

By John Addison

John Addison is the author of two books - Save Gas, Save the Planet that details the future of transportation and Revenue Rocket about technology partner strategy. CNET, Clean Fleet Report, and Meeting of the Minds have published over 300 of his articles. Prior to being a writer and speaker, he was in partner and sales management for technology companies such as Sun Microsystems. Follow John on Twitter @soaringcities.

Sep 21, 2015 | Smart Cities | 0 comments

Over the next 40 years, we will progress to a better and different approach to generating, transmitting, and using energy. In some ways, the transition resembles the transformation of information technology during the last 40 years. Through the mid-seventies, over 90 percent of computing was done on centralized mainframe computers accessed by dumb terminals. Then minicomputers brought a variety of added capabilities closer to those working with the information. Software dramatically expanded what could be accomplished. Personal computers with local networks rendered obsolete most central mainframes. Now we hold in our hands computers more powerful than those ancient mainframes and access a wealth of information and applications in the cloud.

Forty years ago, if you forecasted today’s mobile and cloud technology, you would have been greeted with scepticism and laughter. Yet, the transformation happened. Now, it is understandable when people are sceptical of a future of smart cities powered with renewable energy. Yet, it will happen.

Until recently, most electricity was generated in central power plants, fueled by coal, natural gas, and nuclear. Now, seven U.S. states provide over 80 percent of their energy from a mix of renewable sources: Washington, Oregon, Idaho, Nevada, South Dakota, Iowa, and Maine. Solar capacity has grown 20 fold since President Obama took office. Cities, states, and nations are racing to be one hundred percent renewable.

Future energy will be free of toxic spills into our drinking water, nuclear disasters, and coal miners dying from lung cancer. Future energy will keep our lights on and elevators running after superstorms. Future energy will be generated within our zero net energy buildings, communities, and cities.

Distributed Generation and Microgrids

Today, central power plants still dominate, yet old ones are being shut down as distributed generation proves superior. A good example is how two nuclear power plants were shut down in Southern California, with their generation more than matched by distributed solar power coupled with innovative battery storage.

At the same time that we are more efficient in capturing wind power and converting solar power, we are becoming efficient in energy use. There was a time when a ten percent annual growth in electricity use was met with new centralized coal and gas plants. Now, in a more efficient United States, electricity demand is only growing one percent annually and renewables meet this incremental demand.

New buildings cut energy requirements 50 to 80 percent with green roofs, optimal insulation, smart windows, efficient HVAC, and LED lighting. Software controlled networks of sensors and controls only use energy when and where needed.

By 2020, globally solar and wind will generate the equivalent of one thousand central power plants. Energy storage capacity will be the equivalent of hundreds of power plants, using everything from pumped hydro to thermal storage to advanced batteries.

Our aging electric grid is designed for a one-way flow of electricity from central power stations to commercial, industrial, and personal customers. Major storms have knocked out these customers for days. Generation and distribution are poorly designed for real time price signals. The aging grid is slowly being upgraded to an intelligent, resilient, two-way network of grids.

A new GTM report details 124 operational and 92 planned microgrids in the U.S. The 2,800 people in Borrego Springs, California, use a microgrid that can connect or disconnect from utility SDG&E’s grid service. The 2,800 use 26 MW of solar energy. The University of California San Diego meets over 80 percent of its power needs within its own microgrid that connects onsite solar, turbines, and fuel cells with power hungry labs and hundreds of buildings. In the aftermath of Superstorm Sandy, New Jersey Transit will keep its electric rail running with a transit microgrid that includes standby generation, renewables, and the ability to run even if the utility grid fails.

Intelligent Energy Management and Zero Net Energy

Energy management is moving faster than the transformation of generation. Organizations often could not identify major costs and sources of energy use. Now GM saves over $20 million annually using Enernoc software, by having a single system that organizes its 1,700 energy bills from 29 countries. GM can see where it achieves the fastest ROI with efficiency investments, by shifting demand, and by investing in its own energy generation.

Early energy systems managed the lighting and heat in buildings. Next generation systems respond to price signals from utilities to downcycle air conditioning and postpone operations until off-peak pricing can be used.

I toured a National Renewable Energy Lab (NREL) zero-net-energy building for over 1,000 employees. The building generates as much power as it consumes. Energy management and the Internet of Things (IoT) use natural daylight and ventilation, and turns off lights and other energy use when people are not present. Solar, wind, and geothermal energy use is optimized.

We are progressing from hundreds of zero-net-energy (ZNE) buildings, to ZNE apartment complexes, university campuses, military bases, communities and soon ZNE cities.

Some of the companies that shaped the information revolution are now reshaping our energy future. IBM, Oracle, Google, and Microsoft are involved in many smart cities projects. Long time technology leaders like Cisco, Texas Instruments, and Qualcomm provide building blocks for the IoT. These experienced IT leaders are joined by thousands of energy technology innovators.

Uber disrupted transportation. AirBnB disrupted the lodging industry. Now, financial innovation disrupts electric utilities, leading to energy that is efficient, smart, and distributed. Major banks, pension funds, and yieldcos are investing billions to own wind farms, solar projects, and energy efficiency retrofits. They eliminate the barrier of upfront capital expenditures that formerly stopped building and home owners, and offer monthly energy payments that lower total bills.
Each day, our energy future becomes more efficient, intelligent, distributed, mobile, and sustainable. Most likely you are one of the thought leaders and innovators that are moving us in the right direction. Thank you.

Photo courtesy of Pat Corkery/NREL

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Optimization Tools to Help Transit Agencies Recover

Optimization Tools to Help Transit Agencies Recover

I spoke last week with Krishna Desai from Cubic Transportation, and we discussed three big problems facing transportation, and the ways that Cubic is approaching these challenges:

1) If (or when) more workers return to traditional on-location jobs, but feel a lingering distrust of crowded spaces, people who can afford it may opt for private cars instead of using public transit for their commute. This will create a massive influx of cars on roads that were already crowded, and more financial woes for transit agencies already dealing with budget shortfalls. Krishna told me about a suite of optimization tools Cubic is deploying in places like Mexico and San Francisco to make public transit more efficient, more transparent, and, overall, more attractive to riders.

2) For the time being, though, we’re dealing with the opposite problem. How can transit agencies find ways to influence user behavior in a way that complies with social distancing and capacity requirements? How can you incentivize riders to wait for the next bus? (In a way that doesn’t alienate them forever – see #1). Cubic has deployed a loyalty/advertising program in Miami-Dade County that was originally intended to increase ridership, but is now being used to help control crowding and social distancing on transit.

3) Transportation infrastructure, in generally, was not built to accomodate 6-feet of separation between riders – or between workers. Little things like, for example, opening gates, requires workers to be closer than 6-feet to riders, and there are examples like that throughout every transit hub. Technology can help, but creating and implementing software/hardware solutions quickly and efficiently requires experience with innovation, deployment, maintenance and more. Cubic has a program called Project Rebound that shows the possibilities.

Need to Improve Your Transportation Plans? Try Inverting the Order of Planning

Need to Improve Your Transportation Plans? Try Inverting the Order of Planning

Advanced Urban Visioning offers a powerful tool for regions that are serious about achieving a major transformation in their sustainability and resilience. By clarifying what optimal transportation networks look like for a region, it can give planners and the public a better idea of what is possible. It inverts the traditional order of planning, ensuring that each mode can make the greatest possible contribution toward achieving future goals.

Advanced Urban Visioning doesn’t conflict with government-required planning processes; it precedes them. For example, the AUV process may identify the need for specialized infrastructure in a corridor, while the Alternatives Analysis process can now be used to determine the time-frame where such infrastructure becomes necessary given its role in a network.

Life is a Highway: Embracing Intelligent Transportation Systems

Life is a Highway: Embracing Intelligent Transportation Systems

The introduction of intelligent transportation systems, which includes a broad network of smart roads, smart cars, smart streetlights and electrification are pushing roadways to new heights. Roadways are no longer simply considered stretches of pavement; they’ve become platforms for innovation. The ability to empower roadways with intelligence and sensing capabilities will unlock extraordinary levels of safety and mobility by enabling smarter, more connected transportation systems that benefit the public and the environment.

The Future of Cities

Mayors, planners, futurists, technologists, executives and advocates — hundreds of urban thought leaders publish on Meeting of the Minds. Sign up below to follow the future of cities.

You have Successfully Subscribed!

Share This