Observations from the Lawrence Berkeley National Laboratory’s FLEXLAB

By Hannah Greinetz

Hannah Greinetz is the Managing Editor of the Meeting of the Minds Blog. She holds a BA in Anthropology from UC Santa Cruz and an MBA in Sustainable Management from Presidio Graduate School.

Nov 10, 2015 | Smart Cities | 0 comments

The Meeting of the Minds conference this year was a stimulating gathering of thought leaders, city leaders, and change makers, held in Richmond, California’s historic Craneway Pavilion. The agenda of esteemed speakers covered everything from Singapore’s NEWater strategy, to the strategy behind creating a sustainable economy in Detroit, to digital currencies and affordable housing in Vancouver.

During the afternoon of October 21, conference attendees broke out into groups and boarded the buses waiting outside to take them to afternoon breakout sessions, one of which was a tour of UC Berkeley’s FLEXLAB facility focused on how we can reduce energy consumption of commercial buildings.

The Lawrence Berkeley National Laboratory’s FLEXLAB sits high in the hills above the UC Berkeley Campus and exists to address the fact that a staggering 40% of our electrical energy use is by commercial office buildings. In 2012, with $15.9million in funding from the U.S. Department of Energy (DOE), Berkeley Lab broke ground on a flexible design test bed for building efficiency technologies. FLEXLAB derives its name from the purpose for the research being conducted there: Facility for Low Energy eXperiments in Buildings; the test beds there test the efficiency of HVAC, lighting, windows, building envelope, control systems, and plug loads, in any combination.

As we filed off of the buses, our backs to a stunning view of Oakland, Berkeley, and San Francisco, we approached the four buildings that make up the test beds at FLEXLAB. There are two identical buildings with interchangeable siding and south-facing windows that are designed to let users test drive a technology side by side and monitor the results. A third building is mounted on a 270 degree rotating cement slab that can control for the position of a building’s windows or capture data from the windows or PV panels from different angles. Each of the buildings is outfitted with about 2,000 sensors to monitor things like heat, moisture, glare, and temperature. The buildings are designed to test different components of a building that impact its energy use, and by testing them at FLEXLAB, with its 6,000+ sensors and data analysis, builders and developers can be sure that they’re installing the optimal mix of windows, HVAC, solar PV, and even desks and carpets, to ensure peak efficiency.

Real Time Experimentation

In the first private sector installation at FLEXLAB, Webcor Builders installed the siding, windows, ventilation systems, lighting, and even the desks they planned to use in Genentech’s newly constructed 250,000 square foot office building in South San Francisco office. The test beds at FLEXLAB enabled Webcor to mock up the components of the Genentech building and test the combination and design before they started building. The series of tests was designed to enable decision making on shading and lighting components of the building; they also used the rotating test bed to test three different potential orientations of the building.

As a result, Webcor was able to maximize the efficiency of space in the building, and minimize glare, maximizing comfort at workstations near the windows. Although FLEXLAB was just opening its doors and Webcor was relatively close to breaking ground on the new Genentech office when the tests were conducted, the FLEXLAB project was still able to add great value to the Genentech building in finding the best management practices of shading and light controls.

Berkeley Lab’s Global Partnership Alliance

For the second segment of our visit, the Meeting of the Minds group engaged in discussion with the founder of the Global Partnership Alliance (GPA), Rahul Chopra. Rahul introduced our group to the driving ideas behind GPA: “to standardize, commercialize, and monetize energy efficiency in buildings, creating new investment opportunities that will drive deep cuts in building energy use.” He then asked the group for our thoughts on how we can bring private ideas and investment dollars in to capitalize on the $290billion market opportunity that commercial energy efficiency represents, and with a room full of business minds and thought leaders on the subject, a lively discussion ensued.

Rahul seeded the conversation with ideas of how buildings can act as part of the interactive energy ecosystem, asking: ‘how can buildings influence the grid in a positive way? Electric vehicles, microgrids, energy storage, solar PV, and productivity data are all aspects of the answers that GPA is considering. The conversation also centered around how new market initiatives will enable the monetization of building energy efficiency, especially without government incentives. Ideas around the renaissance of REIT capital prompted discussion of a rooftop REIT, separate from the assets of the building. The large market for efficiency data analytics also came into play in a discussion around data sharing and metrics for success that investors will be able to use to guarantee performance and energy savings on capital invested into building efficiency.

GPA is seeking to bridge the gap between the technologies being tested at FLEXLAB, and successfully monetize and bring them to the market via public-private partnerships and new market mechanisms. Today, they’re working on creating guarantees for performance to reduce project performance risk in building efficiency investments; integrated building management systems; and creating IBOS, a standardized operating system for smart buildings that will be able to collect data, control operations, and create data analytics to open up further possibilities for innovation in how buildings perform.

 

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

COVID-19 is Creating the Largest Ever Telecommunity, But Not for Everyone

COVID-19 is Creating the Largest Ever Telecommunity, But Not for Everyone

Social distancing is becoming the new normal, at least for those of us who are heeding the Center for Disease Control’s warnings and guidelines. But if you don’t have reliable, high-speed broadband, it is impossible to engage in what is now the world’s largest telecommunity. As many schools and universities around the world (including those of my kids) are shut down, these institutions are optimistically converting to online and digital learning. However, with our current broadband layout, this movement will certainly leave many Americans behind.

How to Move More People with Fewer Vehicles

How to Move More People with Fewer Vehicles

Accenture analysts recently released a report calling for cities to take the lead in creating coordinated, “orchestrated” mobility ecosystems. Limiting shared services to routes that connect people with mass transit would be one way to deploy human-driven services now and to prepare for driverless service in the future. Services and schedules can be linked at the backend, and operators can, for example, automatically send more shared vehicles to a train station when the train has more passengers than usual, or tell the shared vehicles to wait for a train that is running late.

Managing urban congestion and mobility comes down to the matter of managing space. Cities are characterized by defined and restricted residential, commercial, and transportation spaces. Private autos are the most inefficient use of transportation space, and mass transit represents the most efficient use of transportation space. Getting more people out of private cars, and into shared feeder routes to and from mass transit modes is the most promising way to reduce auto traffic. Computer models show that it can be done, and we don’t need autonomous vehicles to realize the benefits of shared mobility.

Planning for Arts and Culture in San Diego

Planning for Arts and Culture in San Diego

The role of government, and the planning community, is perhaps to facilitate these kinds of partnerships and make it easier for serendipity to occur. While many cities mandate a portion of the development budget toward art, this will not necessarily result in an ongoing benefit to the arts community as in most cases the budget is used for public art projects versus creating opportunities for cultural programming.  

Rather than relying solely on this mandate, planners might want to consider educating developers with examples and case studies about the myriad ways that artists can participate in the development process. Likewise, outreach and education for the arts community about what role they can play in projects may stimulate a dialogue that can yield great results. In this sense, the planning community can be an invaluable translator in helping all parties to discover a richer, more inspiring, common language.

Share This