Observations from the Lawrence Berkeley National Laboratory’s FLEXLAB

By Hannah Greinetz

Hannah Greinetz holds a BA in Anthropology from UC Santa Cruz and an MBA in Sustainable Management from Presidio Graduate School.

Nov 10, 2015 | Smart Cities | 0 comments


Who will you meet?

Cities are innovating, companies are pivoting, and start-ups are growing. Like you, every urban practitioner has a remarkable story of insight and challenge from the past year.

Meet these peers and discuss the future of cities in the new Meeting of the Minds Executive Cohort Program. Replace boring virtual summits with facilitated, online, small-group discussions where you can make real connections with extraordinary, like-minded people.


 

The Meeting of the Minds conference this year was a stimulating gathering of thought leaders, city leaders, and change makers, held in Richmond, California’s historic Craneway Pavilion. The agenda of esteemed speakers covered everything from Singapore’s NEWater strategy, to the strategy behind creating a sustainable economy in Detroit, to digital currencies and affordable housing in Vancouver.

During the afternoon of October 21, conference attendees broke out into groups and boarded the buses waiting outside to take them to afternoon breakout sessions, one of which was a tour of UC Berkeley’s FLEXLAB facility focused on how we can reduce energy consumption of commercial buildings.

The Lawrence Berkeley National Laboratory’s FLEXLAB sits high in the hills above the UC Berkeley Campus and exists to address the fact that a staggering 40% of our electrical energy use is by commercial office buildings. In 2012, with $15.9million in funding from the U.S. Department of Energy (DOE), Berkeley Lab broke ground on a flexible design test bed for building efficiency technologies. FLEXLAB derives its name from the purpose for the research being conducted there: Facility for Low Energy eXperiments in Buildings; the test beds there test the efficiency of HVAC, lighting, windows, building envelope, control systems, and plug loads, in any combination.

As we filed off of the buses, our backs to a stunning view of Oakland, Berkeley, and San Francisco, we approached the four buildings that make up the test beds at FLEXLAB. There are two identical buildings with interchangeable siding and south-facing windows that are designed to let users test drive a technology side by side and monitor the results. A third building is mounted on a 270 degree rotating cement slab that can control for the position of a building’s windows or capture data from the windows or PV panels from different angles. Each of the buildings is outfitted with about 2,000 sensors to monitor things like heat, moisture, glare, and temperature. The buildings are designed to test different components of a building that impact its energy use, and by testing them at FLEXLAB, with its 6,000+ sensors and data analysis, builders and developers can be sure that they’re installing the optimal mix of windows, HVAC, solar PV, and even desks and carpets, to ensure peak efficiency.

Real Time Experimentation

In the first private sector installation at FLEXLAB, Webcor Builders installed the siding, windows, ventilation systems, lighting, and even the desks they planned to use in Genentech’s newly constructed 250,000 square foot office building in South San Francisco office. The test beds at FLEXLAB enabled Webcor to mock up the components of the Genentech building and test the combination and design before they started building. The series of tests was designed to enable decision making on shading and lighting components of the building; they also used the rotating test bed to test three different potential orientations of the building.

As a result, Webcor was able to maximize the efficiency of space in the building, and minimize glare, maximizing comfort at workstations near the windows. Although FLEXLAB was just opening its doors and Webcor was relatively close to breaking ground on the new Genentech office when the tests were conducted, the FLEXLAB project was still able to add great value to the Genentech building in finding the best management practices of shading and light controls.

Berkeley Lab’s Global Partnership Alliance

For the second segment of our visit, the Meeting of the Minds group engaged in discussion with the founder of the Global Partnership Alliance (GPA), Rahul Chopra. Rahul introduced our group to the driving ideas behind GPA: “to standardize, commercialize, and monetize energy efficiency in buildings, creating new investment opportunities that will drive deep cuts in building energy use.” He then asked the group for our thoughts on how we can bring private ideas and investment dollars in to capitalize on the $290billion market opportunity that commercial energy efficiency represents, and with a room full of business minds and thought leaders on the subject, a lively discussion ensued.

Rahul seeded the conversation with ideas of how buildings can act as part of the interactive energy ecosystem, asking: ‘how can buildings influence the grid in a positive way? Electric vehicles, microgrids, energy storage, solar PV, and productivity data are all aspects of the answers that GPA is considering. The conversation also centered around how new market initiatives will enable the monetization of building energy efficiency, especially without government incentives. Ideas around the renaissance of REIT capital prompted discussion of a rooftop REIT, separate from the assets of the building. The large market for efficiency data analytics also came into play in a discussion around data sharing and metrics for success that investors will be able to use to guarantee performance and energy savings on capital invested into building efficiency.

GPA is seeking to bridge the gap between the technologies being tested at FLEXLAB, and successfully monetize and bring them to the market via public-private partnerships and new market mechanisms. Today, they’re working on creating guarantees for performance to reduce project performance risk in building efficiency investments; integrated building management systems; and creating IBOS, a standardized operating system for smart buildings that will be able to collect data, control operations, and create data analytics to open up further possibilities for innovation in how buildings perform.

 

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Public-Private Collaboration – Essential for Disaster Risk Reduction

Public-Private Collaboration – Essential for Disaster Risk Reduction

A few years ago, I worked with some ARISE-US members to carry out a survey of small businesses in post-Katrina New Orleans of disaster risk reduction (DRR) awareness.  One theme stood out to me more than any other.  The businesses that had lived through Katrina and survived well understood the need to be prepared and to have continuity plans.  Those that were new since Katrina all tended to have the view that, to paraphrase, “well, government (city, state, federal…) will take care of things”.

While the experience after Katrina, of all disasters, should be enough to show anyone in the US that there are limits on what government can do, it does raise the question, of what could and should public and private sectors expect of one another?

Planning for the New Mobilities

Planning for the New Mobilities

When planning for new mobilities, it is important to be a little skeptical. Advocates often exaggerate the benefits and overlook significant costs. Here’s an example. Optimists predict that autonomous cars will reduce traffic congestion, crash risk, energy consumption and pollution emissions, but to achieve these benefits they require dedicated lanes for platooning (many vehicles driving close together at relatively high speeds). When should communities dedicate special lanes for the exclusive use of autonomous vehicles? How much should users pay for the privilege? How should this be enforced? Who will be liable if a high-speed platoon crashes, resulting in a multi-vehicle pile-up?

Why Investing in Play Must Be Part of COVID Recovery

Why Investing in Play Must Be Part of COVID Recovery

Infrastructure is on the tip of every mayor’s tongue. It’s no wonder, with billions in federal funding on the table for the first time in a generation and rapidly compounding infrastructure needs. American Rescue Plan dollars represent a once-in-a-lifetime opportunity to invest in communities, support resident priorities, and move the needle on racial equity all at the same time. Parks and playgrounds exist in an ideal sweet spot in each of these areas, and cities should consider making investments in these vital pieces of community infrastructure as part of their recovery and resilience strategies.

The Future of Cities

Mayors, planners, futurists, technologists, executives and advocates — hundreds of urban thought leaders publish on Meeting of the Minds. Sign up to follow the future of cities.

You have Successfully Subscribed!

Wait! Before You Leave —

Wait! Before You Leave —

Subscribe to receive updates on the Executive Cohort Program!

You have Successfully Subscribed!

Share This