Gray and Green Infrastructure for Increased Urban Resiliency

By Horacio Terraza

Horacio Terraza is the coordinator of the Inter-American Development Bank’s Emerging and Sustainable Cities Initiative (ESCI), Infrastructure Management and Environment Sector. He is also a Lead Water and Sanitation Specialist with the Water and Sanitation Division. Trained as a mechanical engineer at the University of La Plata in Argentina, he has extensive experience developing complex projects related to urban and industrial pollution, working for 20 years in the private sector and multinational development organizations. Horacio also holds a Masters in International Economics and International Relations from SAIS at the University of Johns Hopkins.

Aug 12, 2013 | Smart Cities | 0 comments

The Case of Combined Sewer Overflows

Environmental degradation of urban rivers and water bodies is a common concern—both in developing and developed cities.  In Latin America, the situation is particularly critical in major metropolis. Rivers like the Tiete in Sao Paulo, and Matanza-Riachuelo and Reconquista in Buenos Aires, have suffered decades of uncontrolled discharges and neglect. One of the most usual contaminants is the organic load due to the sewerage discharges. The organic loads needs oxygen to get degraded in the water. Thus, excessive sewerage discharges greatly reduce the available oxygen for aquatic life, making it harder to sustain the ecological chain. In some areas of the Matanza-Riachuelo in Buenos Aires, dissolved oxygen is practically zero—literally a dead river.

While in the developing world environmental degradation may be linked to laxer environmental standards and limited enforcement, many cities in the developed world also face problems of this nature. Even when sewage is treated to meet stringent environmental standards before discharge, additional problems arise for cities with combined stormwater and sanitary sewage collection systems.

Combining sewage and stormwater collection systems tends to be a cost-effective solution for a city. With one tunnel for both sewage and stormwater streams, the initial investment and operation of the system are reduced versus the separate-tunnel option. However, heavy rain events can easily exceed the capacity of this system.  This causes overflows that result in the discharge of a mixture of untreated stormwater and sanitary sewage directly into the receiving river, lake or sea, with negative environmental and public health consequences.

So, how can cities strategically plan and manage their infrastructure to address this problem?

The most traditional option is the “gray” infrastructure one, in which sewerage mains, tunnels, and wastewater treatment plants, plays a key role in collecting, conveying and treating the sewage and stormwater prior to discharge. The case of expanding the existing gray infrastructure for meeting the demands of population increase in London, UK will be reviewed as an example.

However, the “Green” infrastructure” can complement and make the “grey” one more cost-efficient reducing the volume of stormwater collected—thus avoiding  overflows during heavy rain events. Green stormwater infrastructure imitates natural hydrologic processes that reduce runoff by absorbing stormwater. One type of this stormwater infrastructure is bioswales that use rainwater “harvesting” techniques by directing runoff to landscaped areas that retain and infiltrate rainwater. Green infrastructure can also have community benefits by acting as recreation areas, while increasing property values in the neighboring blocks. One such example will be reviewed for the City of Cleveland, Ohio.

Use of Gray Infrastructure—The Case of London

In a typical year, 39 million tons of untreated sewage are discharged into the River Thames. The London sewerage system, designed originally in 1850 for a population of 4 million, was prepared to overflow under high demand events into the River Thames via 57 combined sewer overflows (CSOs), located along the banks of the river.

London’s population is now over 8 million, and the system is out of capacity. Some CSOs discharge untreated sewage into the river on average more than once a week, and after only 2 mm of rainfall. The growth of London’s population, as well as an increase in building developments and paved surfaces, has meant that overflows from the CSOs happen more and more frequently.

To comply with UK and European standards, Thames Water utility developed the project Thames Tideway Tunnel. The Thames Tideway “trendy” scheme is a proposed 25 km (16 mi) tunnel, with an internal diameter of 24 ft running mostly under the River Thames through central London, which will provide storage and conveyance of combined raw sewage and stormwater discharges that currently overflow into the river.

Combined Sewer Overflow

Schematics of proposed new tunnel for Combined Sewer Overflow collection. Source: Thames Tideway Tunnel Project

Working with the Environment Agency, Thames Water identified the most polluting combined sewer overflows. The proposed tunnel will control 34 of these CSOs, via transfer tunnels along the way. The captured sewage would then be transferred to Beckton Sewage Treatment Works, a wastewater treatment plant located downstream, and currently being upgraded to increase capacity. This connection will be done via the Lee Tunnel (already under construction), and the plant will provide  treatment to the overflow before discharge.

Once constructed, the system is expected to reduce the number of overflows to a maximum of four times a year. The entire project is expected to take between six and seven years to complete at a cost of $6.4 billion.

The Case of Cleveland, Ohio

A purely “gray” infrastructure approach might not always be the most effective solution. The Combined Sewer Overflow (CSO) program for Cleveland is a hybrid approach, combining gray and green infrastructure. The City of Cleveland Combined Sewer system covers 75 square miles, with more than 50% of this area being paved surfaces.

Project Clean Lake, an initiative developed by the Northeast Ohio Regional Sewer District (NEORSD), seeks to address water-quality issues caused by CSO discharges in order to comply with the federal Clean Water Act. The majority the investment in Project Clean Lake will fund the construction of seven tunnels, two to five miles long, and up to 24 feet in diameter.

Additional CSP CaptureThe original budget was not enough to meet the CSO standard, an additional $182 million were required.  The innovative part in this project, is that $42 million of the total budget will be used for green infrastructure, including parks, private-sector development projects, and vacant land reconversion in strategic locations of the city, generating cost savings of $87 Million. In other words:  the investment in green infrastructure will reduce the need for upsized gray infrastructure, thus yielding savings of about $87 million.

Final Remarks

Environmental degradation of urban bodies of water continues to be a major concern for cities around the world. Gray infrastructure is critical for adequate collection, conveyance and treatment of the combined sewage and stormwater discharges.

However, considering green infrastructure as part of sustainability and urban planning efforts is critical. Green infrastructure can not only help to reduce stormwater runoff (and thus reduce the required gray infrastructure) in a cost-effective way, but it may also be an essential tool in designing a more sustainable urban landscape and key component in improving the general population welfare.

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

How to Move More People with Fewer Vehicles

How to Move More People with Fewer Vehicles

Accenture analysts recently released a report calling for cities to take the lead in creating coordinated, “orchestrated” mobility ecosystems. Limiting shared services to routes that connect people with mass transit would be one way to deploy human-driven services now and to prepare for driverless service in the future. Services and schedules can be linked at the backend, and operators can, for example, automatically send more shared vehicles to a train station when the train has more passengers than usual, or tell the shared vehicles to wait for a train that is running late.

Managing urban congestion and mobility comes down to the matter of managing space. Cities are characterized by defined and restricted residential, commercial, and transportation spaces. Private autos are the most inefficient use of transportation space, and mass transit represents the most efficient use of transportation space. Getting more people out of private cars, and into shared feeder routes to and from mass transit modes is the most promising way to reduce auto traffic. Computer models show that it can be done, and we don’t need autonomous vehicles to realize the benefits of shared mobility.

Planning for Arts and Culture in San Diego

Planning for Arts and Culture in San Diego

The role of government, and the planning community, is perhaps to facilitate these kinds of partnerships and make it easier for serendipity to occur. While many cities mandate a portion of the development budget toward art, this will not necessarily result in an ongoing benefit to the arts community as in most cases the budget is used for public art projects versus creating opportunities for cultural programming.  

Rather than relying solely on this mandate, planners might want to consider educating developers with examples and case studies about the myriad ways that artists can participate in the development process. Likewise, outreach and education for the arts community about what role they can play in projects may stimulate a dialogue that can yield great results. In this sense, the planning community can be an invaluable translator in helping all parties to discover a richer, more inspiring, common language.

Sustainable Cities Need Smart Investment and Policies

Sustainable Cities Need Smart Investment and Policies

While the outlook for the environment may often seem bleak, there are many proven methods already available for cities to make their energy systems and other infrastructure not only more sustainable, but cheaper and more resilient at the same time. This confluence of benefits will drive investments in clean, efficient energy, transportation, and water infrastructure that will enable cities to realize their sustainability goals.

Given that many of the policy mechanisms that impact cities’ ability to boost sustainability are implemented at the state or federal level, municipalities should look to their own operations to implement change. Cities can lead as a major market player, for example, by converting their own fleets to zero emission electric vehicles, investing in more robust and efficient water facilities, procuring clean power, and requiring municipal buildings to be LEED certified.

Share This