Energy Efficiency and Solar in the $8 Billion School Energy Market

By John Addison

John Addison is the author of two books - Save Gas, Save the Planet that details the future of transportation and Revenue Rocket about technology partner strategy. CNET, Clean Fleet Report, and Meeting of the Minds have published over 300 of his articles. Prior to being a writer and speaker, he was in partner and sales management for technology companies such as Sun Microsystems. Follow John on Twitter @soaringcities.

There are 125,000 schools in the U.S., pre-kindergarten through twelfth grade (K-12), spending $8 billion annually on energy, more than on computers and textbooks combined. Schools are investing in energy efficiency and solar, often creating a better learning environment as energy costs are brought under control.

The stakes are far bigger than $8 billion. The DOE estimates that K-12 schools have a deferred maintenance backlog of $254 billion. Much of this should include smart and efficient new buildings, efficiency retrofits, and clean energy infrastructure upgrades. The best schools are using energy and financial innovation to upgrade their buildings, lighting, and generation of their own energy to save money and avoid upfront capital expenditure (capex).

Energy Efficiency

Smart and efficient buildings are having a big impact. In a typical school building, 30 percent of energy is for lighting. LED lighting uses only a fraction of the energy of older lights. Using the internet of things (IoT), lights can be automatically turned off when a network of low-cost sensors detects that a room is empty. Classrooms designed to make good use of natural light help students learn more, have fewer behavioral issues, and use less electricity. Studies have documented up to 26 percent test improvements in natural daylight environments.

Heating and cooling demand 35 percent of energy in a typical school. Schools like Hawai’i Preparatory use good passive design to orient the building for warmth in winter and cooling for hot days, and make best use of natural ventilation. HVAC demands are minimal in buildings with well insulated walls, roofs, and windows. With ground source heat exchange, HVAC can often be eliminated. Using the flood of low cost sensor to the market, the IoT can enable greater savings by automatically adjusting temperature based on the presence or absence of people.

Many states have rebates and programs for schools to improve efficiency. California K-12 schools reap the benefits of Proposition 39, legislation included in the California Clean Energy Jobs Act, which is providing billions of dollars to schools. Other states have used similar programs: the SCORE Program in Texas, Tennessee’s Energy Efficient Schools Council, and the High Performance Green Schools Planning State Grant Program of Pennsylvania. Colorado schools save millions with utility demand side management programs.

The Gordon-Rushville Public School District in Nebraska has a $5.8 million Energy Savings Performance Contract (ESPC) with Ameresco that upgraded energy efficiency at a high school, middle school, and elementary school. Aging HVAC was replaced with efficient HVAC and ground source heat pumps, efficient dual pane windows, LED lighting, and good old fashion fixing of roofs and heat leaks. The project was made possible by special state funding, a $2.5 million tax exempt bond, and reduction of capex from the ESPC contract. Performance contracts can be considered a form of public-private partnership where the public school avoids the capital investment and the private firm shares in the savings.

Solar

The Great Recession hit schools hard. West Sonoma County Union High School District had to cut the jobs of 10 percent of teachers and 32 percent of staff, while spending more on rising energy costs. Now they are saving $9 million over 25 years after installing 834 kW of solar car ports, with RGS Energy installing SunPower panels to meet 75 percent of all electricity demands at three high schools.

About 5,500 US K-12 schools have solar systems totaling one gigawatt of generating capacity, details  Brighter Future: A Study on Solar in U.S. Schools, a report from the SEIA. Adding solar is a no-brainer in sunny states like California, Arizona, and Nevada, but it is also widely adopted in states with high electricity costs and progressive policies like New Jersey, Massachusetts, and Connecticut.

The 60-page report details the solar installed at schools, and how each district has handled budget and finance issues. Power purchase agreements (PPA) are the primary financing method, representing about 90 percent of all installed school solar systems. For example, Broadalbin-Perth Central School District, New York, is using a PPA for a 2 MW offsite solar array that is projected to save $5.3 million over a 25-year period. Kern High School District in California installed a 24.5 MW SunPower solar parking at 27 sites using a PPA and projects 25-year savings at $80 million.

Schools are incorporating solar into their science, technology, engineering, and math (STEM) education. For example, in Arlington, Virginia, the Discovery Elementary school is zero net energy, generating all of its energy consumption needs with 495 kW solar PV, solar thermal hot water, and geothermal heat exchange instead of traditional HVAC. The school’s net-zero design is part of the school’s interactive curriculum. Each fifth-grade student is required to complete a research project on a specific design aspect of the school. At the end of the year, the students are able to lead tours of the building for school visitors.

By combining energy efficiency and solar, schools may eventually save billions that can go to better classrooms, more teachers and aids, and better learning. These clean energy advances have not only started with school district energy experts, they have started with city management, parents, and even students. Budget and capital expenditure concerns are alleviated with PPA and service agreements. You might even take the lead at your local school.

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Read more from the Meeting of the Minds Blog

Spotlighting innovations in urban sustainability and connected technology

Rethinking Coastal Property in an Era of Climate Change

Rethinking Coastal Property in an Era of Climate Change

The country has provided hundreds of billions of dollars to recover from recent coastal storms but done little to rethink the existing policies and programs that contribute to coastal property losses, or to define new measures that account for the new realities of more damaging storms and rising sea levels.

A key first step toward smarter policies is to improve disclosure of risk associated with coastal properties. This will require better mapping of areas at risk of both storms and rising seas. National standards are needed for disclosure of coastal flood risk prior to sale. Lenders and supporting agencies need to evaluate and disclose coastal flood risk.

How Cities Can Engage with Mobility as a Service

How Cities Can Engage with Mobility as a Service

By incorporating multiple transport modes into a single application, users can benefit from personalised services which recognise individual mobility needs, easier transactions and payments, and dynamic journey management and planning.

A fully comprehensive MaaS offering could mean the ownership of private vehicles is no longer necessary for people. As mobility needs begin to be provided by a range of services through a single platform, usership could replace ownership.

The potential of MaaS has been recognised around the world. In the UK, the government has included MaaS within its transport strategy. An expert committee of Members of Parliament concluded that MaaS has the “potential to transform how people travel” by boosting public transport, reducing congestion, and improving air quality.

Four Cornerstones for Integrating Water and Energy Systems

Four Cornerstones for Integrating Water and Energy Systems

The water-energy nexus is not new. The concept that our water and energy systems are reliant on each other is sometimes paired with a third issue, like food security or public health. This can make it more relevant to our daily lives. Despite a basic understanding of resource interdependencies, city and utility leaders still allow planning and implementation processes to remain predominately separate. A common local scenario finds the water utility facing system upkeep alone, the energy utility not considering other utility issues or city goals as they operate, and city leaders generally focused on more visibly troublesome urban systems, like housing or transportation.

Share This