Energy Efficiency and Solar in the $8 Billion School Energy Market

By John Addison

John Addison is the author of two books - Save Gas, Save the Planet that details the future of transportation and Revenue Rocket about technology partner strategy. CNET, Clean Fleet Report, and Meeting of the Minds have published over 300 of his articles. Prior to being a writer and speaker, he was in partner and sales management for technology companies such as Sun Microsystems. Follow John on Twitter @soaringcities.

There are 125,000 schools in the U.S., pre-kindergarten through twelfth grade (K-12), spending $8 billion annually on energy, more than on computers and textbooks combined. Schools are investing in energy efficiency and solar, often creating a better learning environment as energy costs are brought under control.

The stakes are far bigger than $8 billion. The DOE estimates that K-12 schools have a deferred maintenance backlog of $254 billion. Much of this should include smart and efficient new buildings, efficiency retrofits, and clean energy infrastructure upgrades. The best schools are using energy and financial innovation to upgrade their buildings, lighting, and generation of their own energy to save money and avoid upfront capital expenditure (capex).

Energy Efficiency

Smart and efficient buildings are having a big impact. In a typical school building, 30 percent of energy is for lighting. LED lighting uses only a fraction of the energy of older lights. Using the internet of things (IoT), lights can be automatically turned off when a network of low-cost sensors detects that a room is empty. Classrooms designed to make good use of natural light help students learn more, have fewer behavioral issues, and use less electricity. Studies have documented up to 26 percent test improvements in natural daylight environments.

Heating and cooling demand 35 percent of energy in a typical school. Schools like Hawai’i Preparatory use good passive design to orient the building for warmth in winter and cooling for hot days, and make best use of natural ventilation. HVAC demands are minimal in buildings with well insulated walls, roofs, and windows. With ground source heat exchange, HVAC can often be eliminated. Using the flood of low cost sensor to the market, the IoT can enable greater savings by automatically adjusting temperature based on the presence or absence of people.

Many states have rebates and programs for schools to improve efficiency. California K-12 schools reap the benefits of Proposition 39, legislation included in the California Clean Energy Jobs Act, which is providing billions of dollars to schools. Other states have used similar programs: the SCORE Program in Texas, Tennessee’s Energy Efficient Schools Council, and the High Performance Green Schools Planning State Grant Program of Pennsylvania. Colorado schools save millions with utility demand side management programs.

The Gordon-Rushville Public School District in Nebraska has a $5.8 million Energy Savings Performance Contract (ESPC) with Ameresco that upgraded energy efficiency at a high school, middle school, and elementary school. Aging HVAC was replaced with efficient HVAC and ground source heat pumps, efficient dual pane windows, LED lighting, and good old fashion fixing of roofs and heat leaks. The project was made possible by special state funding, a $2.5 million tax exempt bond, and reduction of capex from the ESPC contract. Performance contracts can be considered a form of public-private partnership where the public school avoids the capital investment and the private firm shares in the savings.

Solar

The Great Recession hit schools hard. West Sonoma County Union High School District had to cut the jobs of 10 percent of teachers and 32 percent of staff, while spending more on rising energy costs. Now they are saving $9 million over 25 years after installing 834 kW of solar car ports, with RGS Energy installing SunPower panels to meet 75 percent of all electricity demands at three high schools.

About 5,500 US K-12 schools have solar systems totaling one gigawatt of generating capacity, details  Brighter Future: A Study on Solar in U.S. Schools, a report from the SEIA. Adding solar is a no-brainer in sunny states like California, Arizona, and Nevada, but it is also widely adopted in states with high electricity costs and progressive policies like New Jersey, Massachusetts, and Connecticut.

The 60-page report details the solar installed at schools, and how each district has handled budget and finance issues. Power purchase agreements (PPA) are the primary financing method, representing about 90 percent of all installed school solar systems. For example, Broadalbin-Perth Central School District, New York, is using a PPA for a 2 MW offsite solar array that is projected to save $5.3 million over a 25-year period. Kern High School District in California installed a 24.5 MW SunPower solar parking at 27 sites using a PPA and projects 25-year savings at $80 million.

Schools are incorporating solar into their science, technology, engineering, and math (STEM) education. For example, in Arlington, Virginia, the Discovery Elementary school is zero net energy, generating all of its energy consumption needs with 495 kW solar PV, solar thermal hot water, and geothermal heat exchange instead of traditional HVAC. The school’s net-zero design is part of the school’s interactive curriculum. Each fifth-grade student is required to complete a research project on a specific design aspect of the school. At the end of the year, the students are able to lead tours of the building for school visitors.

By combining energy efficiency and solar, schools may eventually save billions that can go to better classrooms, more teachers and aids, and better learning. These clean energy advances have not only started with school district energy experts, they have started with city management, parents, and even students. Budget and capital expenditure concerns are alleviated with PPA and service agreements. You might even take the lead at your local school.

Discussion

Leave your comment below, or reply to others.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Read more from the Meeting of the Minds Blog

Spotlighting innovations in urban sustainability and connected technology

Downtown Revitalization Efforts Create a Market for Contractors

A recent study by the International Downtown Association reports that vibrant downtowns contain around 3% of citywide land, but contain 14% of all citywide retail and food and beverage businesses, and 35% of all hotel rooms. This results in $53 million in sales tax per square mile, compared to the citywide average of $5 million. Not to mention that downtown residential buildings also add to the tax base. In the 24 cities included in the study, residential growth in these downtowns outpaced the rest of the city by 400% between 2010 and 2016.

Partnerships between city officials and contractors result in new and visionary downtown destinations. Along with large vertical construction projects, there are opportunities for countless other projects, including parking structures, enhanced Wi-Fi, landscaping, pedestrian and biking paths, and traffic improvements.

The Future of Cities

Ordered city geometry that is built today is meaningless for energy cycles. Resilient networks contain inherent diversity and redundancy, with optimal cooperation among their subsystems, yet they avoid optimization (maximum efficiency) for any single process. They require continuous input of energy in order to function, with energy cycles running simultaneously on many different scales.

Short-term urban fixes only wish to perpetuate the extractive model of cities, not to correct its underlying long-term fragility!

Showing Results Will Win More Funding for Transit Projects

TDM, when employed, works. TDM agencies around the country use a treasure’s trove of strategies to get people out of cars and onto trains, buses, and bikes, which is something that has to happen if we don’t want our roads to become unusable due to traffic and environmental congestion.

But one major problem with the practice of TDM is that it has had a hard time making the case that it is a cost-effective alternative or at least add-on to big infrastructure projects. It seems pretty obvious that teaching people, educating them, about how to use our systems will make those systems run more smoothly. But there has never been a great way to back up that assumption with hard numbers.

Share This