Drilling Deeper into California’s Drought and Water Distribution

By Hannah Greinetz

Hannah Greinetz is the Managing Editor of the Meeting of the Minds Blog. She holds a BA in Anthropology from UC Santa Cruz and an MBA in Sustainable Management from Presidio Graduate School.

There’s a lot of conversation going on around water in the arid West during this drought year, but not all of it is accurate.  California is being hit hard, and the state is clearly taking action and taking advantage of the crisis to promote water legislation; for more on how the state is dealing with the drought at various levels, check out my article from a few weeks ago.  But what’s just as important is the public perception of the drought, and the conversations that this round of water scarcity is evoking.

Where Does All the Water Go?

An oft-cited figure is that 80% of California’s water is consumed and used by agriculture, leaving 20% for homes, businesses, and industrial uses. 80%  sounds like (and is), a massive amount of water,  but to say this portion of the state’s water supply is used by the ag sector is not entirely accurate.  This one skewed factoid is turning agriculture into a scapegoat for California residents who are feeling the price penalties for water and are being asked to cut their use back by 10% by Governor Jerry Brown in the face of the drought, and by 20% by 2020 as part of the Water Conservation Act of 2009. Hearing how much water is used by farmers in the state causes residents to resent conservation measures and policies, and to adopt a mindset of ‘what difference does it really make it I stop watering my lawn when farmers are using four times as much as all os us, and no one’s doing anything about it.’

The numbers on California water require some disentangling to get a clear picture.  There are two different systems of accounting that produce numbers on who uses how much water; one looks solely at developed water and the other considers total annual runoff, which accounts for all precipitation and surface water in the state.  Depending on how you look at it, agriculture does actually use 80% of the water supply – the developed water supply. Developed water is accounted for as water that is captured behind one of California’s hundreds of dams, stored in one of its 1300+ reservoirs, and transported in California’s hundreds of miles of aqueducts, and used only for economic purposes. But if we’re really looking at where California’s water goes, we have to consider the 46% of the total annual water supply that is left in-stream or allowed to percolate into the ground to achieve healthy and sustainable levels of salinity and water quality, and that is needed to maintain a healthy balance in the ecosystems.

So with a narrowed focus, agriculture does use 80% of California water, and 20% is left for urban and industrial use. Another way, agriculture uses 43%, while 46% goes to the environment, and 11% to municipal uses. If the latter numbers were cited more often, would Californians feel more incentivized to save water, thinking that their conservation efforts were directly connected to the health of their environment?  Maybe, but if we drill even deeper into the numbers on agriculture, keeping in mind how much water is used for growing crops, California isn’t seeing a huge return on investment with their precious shared and ever-scarcer freshwater resources.

California’s Agricultural Return – Worth the Sacrifice?

California is the top producer of many of the nation’s fresh fruits and vegetables; the American diet would be vastly different if it weren’t for California’s contributions in volume and diversity of crops. CA produces over 90% of the broccoli consumed in the US, 95% of garlic, 99% of all artichokes and walnuts, 71% of all the spinach sold in the US, and the list goes on.

Looking at this another way, California grows some incredibly water-intensive crops, like rice and almonds.  And in the past few years, almonds have been one of California’s most lucrative agricultural exports.  But in the conversation about water use, this brings in the topic of virtual water – the water embedded in the food and animals. For example, it takes 2,500 liters of water to produce one kilogram of rice. In this vein, California is also one of the nation’s top producers and exporters of hay and alfalfa, which are water-intensive crops and are largely sent to Japan and water-poor Asian countries to feed their growing livestock sectors.  This means that an incredibly water-poor state is exporting millions of gallons of virtual water annually.

Agriculture produces only 2% of California’s GDP, and that’s the generous estimation that includes jobs and processing of food, the number is also cited as low at 1% of state GDP.  Agriculture also directly employs about 53,000 people, which is only about .3 percent of California’s employed.

Growing Rice In the Desert

Economist Paul Romer stated in 2004 that, “A crisis is a terrible thing to waste.”  California is red and deeper red on precipitation maps of the country this year, with a hopeful undertone in the conversation about an El Nino winter.  In some circles, a heavy winter would be the worst thing that could happen to California in terms of long term water management strategy.  It is indeed an important time to be highlighting public interest and turning the conversation around water policy into one that includes future water management strategies, regional plans, best practices, and to be asking the hard questions about what California’s water future will look like.

(The state’s rise to the top as the nation’s largest and most diverse food producer was largely dependent on the development of the large water projects built in the state in the state: the federally funded and operated Central Valley Project, and the state funded and operated State Water Project. San Francisco famously owns its water supply from Hetch Hetchy, which neighbors the Yosemite Valley, while Los Angeles rather infamously gained water rights to the Owen’s Valley to secure its water supply.  The changes that these water projects have made to the California landscape in the past century are mind-boggling, but they are responsible for delivering drinking water to millions and irrigating hundreds of thousands of acres of farmland.)

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Balancing Data Privacy and Data Sharing Between TNCs and Cities

Balancing Data Privacy and Data Sharing Between TNCs and Cities

Data concerns are not going away. Data sharing and open data initiatives will likely become even more important as the transportation industry grows more interdependent among citizens, public agencies, cities, and private companies. In an internal context, de-identification of data allows data to be shared across an organization, allowing all users to access insights, and a common picture of demand and service performance across the network. This allows marketing, planners, and operations teams within transit agencies to access the same secure data when doing short term and long term planning. This also enables data sharing between agencies and transit operators which have adjacent service areas, and allows them to optimize timetables and typical transfer points. In an external context, de-identification allows for safe data sharing across different public, private, and community stakeholders, and lays the foundation for collaboration, interoperability, and common understanding, while putting privacy first.

Optimization Tools to Help Transit Agencies Recover

Optimization Tools to Help Transit Agencies Recover

I spoke last week with Krishna Desai from Cubic Transportation, and we discussed three big problems facing transportation, and the ways that Cubic is approaching these challenges:

1) If (or when) more workers return to traditional on-location jobs, but feel a lingering distrust of crowded spaces, people who can afford it may opt for private cars instead of using public transit for their commute. This will create a massive influx of cars on roads that were already crowded, and more financial woes for transit agencies already dealing with budget shortfalls. Krishna told me about a suite of optimization tools Cubic is deploying in places like Mexico and San Francisco to make public transit more efficient, more transparent, and, overall, more attractive to riders.

2) For the time being, though, we’re dealing with the opposite problem. How can transit agencies find ways to influence user behavior in a way that complies with social distancing and capacity requirements? How can you incentivize riders to wait for the next bus? (In a way that doesn’t alienate them forever – see #1). Cubic has deployed a loyalty/advertising program in Miami-Dade County that was originally intended to increase ridership, but is now being used to help control crowding and social distancing on transit.

3) Transportation infrastructure, in generally, was not built to accomodate 6-feet of separation between riders – or between workers. Little things like, for example, opening gates, requires workers to be closer than 6-feet to riders, and there are examples like that throughout every transit hub. Technology can help, but creating and implementing software/hardware solutions quickly and efficiently requires experience with innovation, deployment, maintenance and more. Cubic has a program called Project Rebound that shows the possibilities.

Need to Improve Your Transportation Plans? Try Inverting the Order of Planning

Need to Improve Your Transportation Plans? Try Inverting the Order of Planning

Advanced Urban Visioning offers a powerful tool for regions that are serious about achieving a major transformation in their sustainability and resilience. By clarifying what optimal transportation networks look like for a region, it can give planners and the public a better idea of what is possible. It inverts the traditional order of planning, ensuring that each mode can make the greatest possible contribution toward achieving future goals.

Advanced Urban Visioning doesn’t conflict with government-required planning processes; it precedes them. For example, the AUV process may identify the need for specialized infrastructure in a corridor, while the Alternatives Analysis process can now be used to determine the time-frame where such infrastructure becomes necessary given its role in a network.

The Future of Cities

Mayors, planners, futurists, technologists, executives and advocates — hundreds of urban thought leaders publish on Meeting of the Minds. Sign up below to follow the future of cities.

You have Successfully Subscribed!

Share This