Drilling Deeper into California’s Drought and Water Distribution

By Hannah Greinetz

Hannah Greinetz is the Managing Editor of the Meeting of the Minds Blog. She holds a BA in Anthropology from UC Santa Cruz and an MBA in Sustainable Management from Presidio Graduate School.

There’s a lot of conversation going on around water in the arid West during this drought year, but not all of it is accurate.  California is being hit hard, and the state is clearly taking action and taking advantage of the crisis to promote water legislation; for more on how the state is dealing with the drought at various levels, check out my article from a few weeks ago.  But what’s just as important is the public perception of the drought, and the conversations that this round of water scarcity is evoking.

Where Does All the Water Go?

An oft-cited figure is that 80% of California’s water is consumed and used by agriculture, leaving 20% for homes, businesses, and industrial uses. 80%  sounds like (and is), a massive amount of water,  but to say this portion of the state’s water supply is used by the ag sector is not entirely accurate.  This one skewed factoid is turning agriculture into a scapegoat for California residents who are feeling the price penalties for water and are being asked to cut their use back by 10% by Governor Jerry Brown in the face of the drought, and by 20% by 2020 as part of the Water Conservation Act of 2009. Hearing how much water is used by farmers in the state causes residents to resent conservation measures and policies, and to adopt a mindset of ‘what difference does it really make it I stop watering my lawn when farmers are using four times as much as all os us, and no one’s doing anything about it.’

The numbers on California water require some disentangling to get a clear picture.  There are two different systems of accounting that produce numbers on who uses how much water; one looks solely at developed water and the other considers total annual runoff, which accounts for all precipitation and surface water in the state.  Depending on how you look at it, agriculture does actually use 80% of the water supply – the developed water supply. Developed water is accounted for as water that is captured behind one of California’s hundreds of dams, stored in one of its 1300+ reservoirs, and transported in California’s hundreds of miles of aqueducts, and used only for economic purposes. But if we’re really looking at where California’s water goes, we have to consider the 46% of the total annual water supply that is left in-stream or allowed to percolate into the ground to achieve healthy and sustainable levels of salinity and water quality, and that is needed to maintain a healthy balance in the ecosystems.

So with a narrowed focus, agriculture does use 80% of California water, and 20% is left for urban and industrial use. Another way, agriculture uses 43%, while 46% goes to the environment, and 11% to municipal uses. If the latter numbers were cited more often, would Californians feel more incentivized to save water, thinking that their conservation efforts were directly connected to the health of their environment?  Maybe, but if we drill even deeper into the numbers on agriculture, keeping in mind how much water is used for growing crops, California isn’t seeing a huge return on investment with their precious shared and ever-scarcer freshwater resources.

California’s Agricultural Return – Worth the Sacrifice?

California is the top producer of many of the nation’s fresh fruits and vegetables; the American diet would be vastly different if it weren’t for California’s contributions in volume and diversity of crops. CA produces over 90% of the broccoli consumed in the US, 95% of garlic, 99% of all artichokes and walnuts, 71% of all the spinach sold in the US, and the list goes on.

Looking at this another way, California grows some incredibly water-intensive crops, like rice and almonds.  And in the past few years, almonds have been one of California’s most lucrative agricultural exports.  But in the conversation about water use, this brings in the topic of virtual water – the water embedded in the food and animals. For example, it takes 2,500 liters of water to produce one kilogram of rice. In this vein, California is also one of the nation’s top producers and exporters of hay and alfalfa, which are water-intensive crops and are largely sent to Japan and water-poor Asian countries to feed their growing livestock sectors.  This means that an incredibly water-poor state is exporting millions of gallons of virtual water annually.

Agriculture produces only 2% of California’s GDP, and that’s the generous estimation that includes jobs and processing of food, the number is also cited as low at 1% of state GDP.  Agriculture also directly employs about 53,000 people, which is only about .3 percent of California’s employed.

Growing Rice In the Desert

Economist Paul Romer stated in 2004 that, “A crisis is a terrible thing to waste.”  California is red and deeper red on precipitation maps of the country this year, with a hopeful undertone in the conversation about an El Nino winter.  In some circles, a heavy winter would be the worst thing that could happen to California in terms of long term water management strategy.  It is indeed an important time to be highlighting public interest and turning the conversation around water policy into one that includes future water management strategies, regional plans, best practices, and to be asking the hard questions about what California’s water future will look like.

(The state’s rise to the top as the nation’s largest and most diverse food producer was largely dependent on the development of the large water projects built in the state in the state: the federally funded and operated Central Valley Project, and the state funded and operated State Water Project. San Francisco famously owns its water supply from Hetch Hetchy, which neighbors the Yosemite Valley, while Los Angeles rather infamously gained water rights to the Owen’s Valley to secure its water supply.  The changes that these water projects have made to the California landscape in the past century are mind-boggling, but they are responsible for delivering drinking water to millions and irrigating hundreds of thousands of acres of farmland.)

Pay What You Can

This is a challenging time for non-profits and convening organizations like Meeting of the Minds. We're asking our audience to support MeetingoftheMinds.org with a pay-what-you-can donation.

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Equitable Stakeholder Engagement in a Remote World

Equitable Stakeholder Engagement in a Remote World

At Connect the Dots, it is our mission to build better cities, towns, and neighborhoods through inclusive, insight-driven stakeholder engagement. We help community, private, and public sector partners to develop creative solutions that move projects and cities forward. Engagement is at the heart of this pursuit, which is why we are sharing our practices with you.

When you decide to take your engagement activities online, we encourage using tools that are functional on a wide range of devices including basic smartphones, tablets, laptops, and desktop computers. We have also developed remote but non-virtual options to bridge the digital divide.

Using Smart City Technology to Adapt to COVID Mobility Preferences

Using Smart City Technology to Adapt to COVID Mobility Preferences

As cities continue to fight against COVID-19, citizens are changing their commuting preferences to adjust to a new way of life. Cities across the globe have experienced significant increases in the number of pedestrians, cyclists, and private cars on the roads as a result of public transport restrictions and social distancing requirements. This has created many new challenges, as cities previously dependent on public transport must now adapt to accommodate more vulnerable road users, such as pedestrians and cyclists.

No Equity, No Resilience: Minneapolis is All of Us

No Equity, No Resilience: Minneapolis is All of Us

It is critical to pause, reflect, and recognize that cities who are not equitable will always be in recovery mode. Inequity is a noted stress in the language of resilience shocks and stresses. It increases the probability and severity of shocks – like social uprisings and the civil unrest we have seen unfold. This holds true for a vast range of other natural and man-made shocks.

The Future of Cities

Mayors, planners, futurists, technologists, executives and advocates — hundreds of urban thought leaders publish on Meeting of the Minds. Sign up below to follow the future of cities.

You have Successfully Subscribed!

Share This