Drilling Deeper into California’s Drought and Water Distribution

By Hannah Greinetz

Hannah Greinetz holds a BA in Anthropology from UC Santa Cruz and an MBA in Sustainable Management from Presidio Graduate School.


Who will you meet?

Cities are innovating, companies are pivoting, and start-ups are growing. Like you, every urban practitioner has a remarkable story of insight and challenge from the past year.

Meet these peers and discuss the future of cities in the new Meeting of the Minds Executive Cohort Program. Replace boring virtual summits with facilitated, online, small-group discussions where you can make real connections with extraordinary, like-minded people.


 

There’s a lot of conversation going on around water in the arid West during this drought year, but not all of it is accurate.  California is being hit hard, and the state is clearly taking action and taking advantage of the crisis to promote water legislation; for more on how the state is dealing with the drought at various levels, check out my article from a few weeks ago.  But what’s just as important is the public perception of the drought, and the conversations that this round of water scarcity is evoking.

Where Does All the Water Go?

An oft-cited figure is that 80% of California’s water is consumed and used by agriculture, leaving 20% for homes, businesses, and industrial uses. 80%  sounds like (and is), a massive amount of water,  but to say this portion of the state’s water supply is used by the ag sector is not entirely accurate.  This one skewed factoid is turning agriculture into a scapegoat for California residents who are feeling the price penalties for water and are being asked to cut their use back by 10% by Governor Jerry Brown in the face of the drought, and by 20% by 2020 as part of the Water Conservation Act of 2009. Hearing how much water is used by farmers in the state causes residents to resent conservation measures and policies, and to adopt a mindset of ‘what difference does it really make it I stop watering my lawn when farmers are using four times as much as all os us, and no one’s doing anything about it.’

The numbers on California water require some disentangling to get a clear picture.  There are two different systems of accounting that produce numbers on who uses how much water; one looks solely at developed water and the other considers total annual runoff, which accounts for all precipitation and surface water in the state.  Depending on how you look at it, agriculture does actually use 80% of the water supply – the developed water supply. Developed water is accounted for as water that is captured behind one of California’s hundreds of dams, stored in one of its 1300+ reservoirs, and transported in California’s hundreds of miles of aqueducts, and used only for economic purposes. But if we’re really looking at where California’s water goes, we have to consider the 46% of the total annual water supply that is left in-stream or allowed to percolate into the ground to achieve healthy and sustainable levels of salinity and water quality, and that is needed to maintain a healthy balance in the ecosystems.

So with a narrowed focus, agriculture does use 80% of California water, and 20% is left for urban and industrial use. Another way, agriculture uses 43%, while 46% goes to the environment, and 11% to municipal uses. If the latter numbers were cited more often, would Californians feel more incentivized to save water, thinking that their conservation efforts were directly connected to the health of their environment?  Maybe, but if we drill even deeper into the numbers on agriculture, keeping in mind how much water is used for growing crops, California isn’t seeing a huge return on investment with their precious shared and ever-scarcer freshwater resources.

California’s Agricultural Return – Worth the Sacrifice?

California is the top producer of many of the nation’s fresh fruits and vegetables; the American diet would be vastly different if it weren’t for California’s contributions in volume and diversity of crops. CA produces over 90% of the broccoli consumed in the US, 95% of garlic, 99% of all artichokes and walnuts, 71% of all the spinach sold in the US, and the list goes on.

Looking at this another way, California grows some incredibly water-intensive crops, like rice and almonds.  And in the past few years, almonds have been one of California’s most lucrative agricultural exports.  But in the conversation about water use, this brings in the topic of virtual water – the water embedded in the food and animals. For example, it takes 2,500 liters of water to produce one kilogram of rice. In this vein, California is also one of the nation’s top producers and exporters of hay and alfalfa, which are water-intensive crops and are largely sent to Japan and water-poor Asian countries to feed their growing livestock sectors.  This means that an incredibly water-poor state is exporting millions of gallons of virtual water annually.

Agriculture produces only 2% of California’s GDP, and that’s the generous estimation that includes jobs and processing of food, the number is also cited as low at 1% of state GDP.  Agriculture also directly employs about 53,000 people, which is only about .3 percent of California’s employed.

Growing Rice In the Desert

Economist Paul Romer stated in 2004 that, “A crisis is a terrible thing to waste.”  California is red and deeper red on precipitation maps of the country this year, with a hopeful undertone in the conversation about an El Nino winter.  In some circles, a heavy winter would be the worst thing that could happen to California in terms of long term water management strategy.  It is indeed an important time to be highlighting public interest and turning the conversation around water policy into one that includes future water management strategies, regional plans, best practices, and to be asking the hard questions about what California’s water future will look like.

(The state’s rise to the top as the nation’s largest and most diverse food producer was largely dependent on the development of the large water projects built in the state in the state: the federally funded and operated Central Valley Project, and the state funded and operated State Water Project. San Francisco famously owns its water supply from Hetch Hetchy, which neighbors the Yosemite Valley, while Los Angeles rather infamously gained water rights to the Owen’s Valley to secure its water supply.  The changes that these water projects have made to the California landscape in the past century are mind-boggling, but they are responsible for delivering drinking water to millions and irrigating hundreds of thousands of acres of farmland.)

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Pitching Your Place of the Future to Next Gen Talent

Pitching Your Place of the Future to Next Gen Talent

Why one city decays and another thrives can sometimes seem random. So, trying to foresee downrange why the future will happen in City A and not City B is hard.  Moreover, to imagine that there is one formula that all 7.8 billion of us should adhere to, wherever it is we live, is clearly nonsensical.

In our work, we study, research, and rank places to determine what the best practices are to increase economic prosperity, social equity, and quality of life. Ultimately, the question we want to answer is: What is it that makes a city a place of the future?  In our research, one thing has become clear to us: next-gen talent is the fuel for the future of place. And by extension, jobs of the future will happen in places of the future.

Digital Twins, Geospatial AI Help Bridge the Physical World and Digital World

Digital Twins, Geospatial AI Help Bridge the Physical World and Digital World

Digital twins and AI analysis would offer significant benefits to organizations across all sectors. By providing a comprehensive look at a geographical area and its infrastructure and assets, these technologies will enable smarter and more targeted field planning optimization. It could help digitize field surveys, offer new levels of remote engineering access, and enable contact tracing around COVID-19.

The focus will continue to shift away from the data itself and towards its relationships. The connections between data are where the most powerful insights lie. With enough data points, organizations can look to analytics to better understand the context and “see” the future.

AI at scale and emerging data technologies truly illustrate this connectivity and potential. Although it’s an emerging field, the benefits are limitless.

Taking a Look into Our Adaptation Blind Spots

Taking a Look into Our Adaptation Blind Spots

In my business, we’d rather not be right. What gets a climate change expert out of bed in the morning is the desire to provide decision-makers with the best available science, and at the end of the day we go to bed hoping things won’t actually get as bad as our science tells us. That’s true whether you’re a physical or a social scientist.

Well, I’m one of the latter and Meeting of the Minds thought it would be valuable to republish an article I penned in January 2020. In that ancient past, only the most studious of news observers had heard of a virus in Wuhan, China, that was causing a lethal disease. Two months later we were in lockdown, all over the world, and while things have improved a lot in the US since November 2020, in many cities and nations around the world this is not the case. India is living through a COVID nightmare of untold proportions as we speak, and many nations have gone through wave after wave of this pandemic. The end is not in sight. It is not over. Not by a longshot.

And while the pandemic is raging, sea level continues to rise, heatwaves are killing people in one hemisphere or the other, droughts have devastated farmers, floods sent people fleeing to disaster shelters that are not the save havens we once thought them to be, wildfires consumed forests and all too many homes, and emissions dipped temporarily only to shoot up again as we try to go “back to normal.”

So, I’ll say another one of those things I wish I’ll be wrong about, but probably won’t: there is no “back to normal.” Not with climate change in an interdependent world.

The Future of Cities

Mayors, planners, futurists, technologists, executives and advocates — hundreds of urban thought leaders publish on Meeting of the Minds. Sign up to follow the future of cities.

You have Successfully Subscribed!

Wait! Before You Leave —

Wait! Before You Leave —

Subscribe to receive updates on the Executive Cohort Program!

You have Successfully Subscribed!

Share This