Combining Technologies to Bring Connectivity to the Community

By Ysni Semsedini

Ysni Semsedini serves as Chief Executive Officer of Festival Hydro and Rhyzome Networks in Stratford, Ontario, Canada. He is an innovator who is always looking for ways that technology can be harnessed to benefit both companies, their clients, and the community.


Who will you meet?

Cities are innovating, companies are pivoting, and start-ups are growing. Like you, every urban practitioner has a remarkable story of insight and challenge from the past year.

Meet these peers and discuss the future of cities in the new Meeting of the Minds Executive Cohort Program. Replace boring virtual summits with facilitated, online, small-group discussions where you can make real connections with extraordinary, like-minded people.


 

Our journey into telecommunications began in 2009 as an initiative to provide a backhaul for Festival Hydro’s smart metering system. That project led us down a path to offering wireless and fibre optic connections. It became clear early on in the project that the infrastructure we were putting in place provided us with the opportunity to create a robust backbone that would support the offering of affordable internet and other connectivity options in a community that was, at the time, largely overlooked by the big players in the Canadian telecommunications space.

That was back in 2009. Today we have more than 70 km of carrier-grade fibre optic cabling that supports:

  • Smart meter data systems
  • Point-to-Point Connectivity for businesses
  • Wireless Access Points for residential and business services
  • Fibre Optic Internet Connections

The deployment of dual band Motorola 7181 access points (802.11a/n) allowed us to offer customers connections in the 2.4 GHz band, while using the 5 GHz band to backhaul information. “Repeaters” were used to add wireless coverage to areas where the fibre did not extend. These repeaters used wireless mesh technology to connect to root nodes which then connected directly to our fibre network that would carry information the rest of the way to the headend.

When all was said and done we were left with a network of more than 300 access points that serviced 58 collectors for smart meter data and Rhyzome Networks was formed to manage the city’s wireless and fibre network.

Rhyzome Networks has undertaken a project to upgrade the equipment used for wireless access in order to create stronger connections between the root access points and the repeaters. Our new network does not rely on the original projects wireless mesh and fibre combination, and instead uses wireless point-to-point and fibre for the backhaul of information and the aging 7181 access points will be swapped out in favor of Aruba units.

Within our new network framework:

The wireless point-to-point uses the 5 GHz band for backhaul.

This decision was based on the increased number of spatial streams available (8) that allowed for a less congestion than in the 2.4GHz band where there are only 4 spatial streams.

Clients have been moved over to antennas with 5 GHz radios.

Although the signal has less penetration than 2.4 GHz, it offers a much stronger connection in spaces where there is a high amount of radio frequency (RF) congestion, such as high density residential areas.

Aruba access points and Nanobeam technology combine in a new way.

This affords us the ability to stay competitive by offering higher speeds for our wireless residential and business customers.

 

There are many lessons that have been learned over the years and a number of things to keep in mind when implementing a wireless network of this magnitude.

Combine technologies that will mitigate those affected by an outage.

In our original wireless mesh design the failure of a root node access point could take an entire cluster offline. With the new technologies that we are implementing we have removed that single point of failure for the wireless clusters. Now when a root node access point is down the others can continue to communicate through the point-to-point devices that are mounted with the access points themselves.

When considering the technology you will use, investigate the availability of a Centralized Management System (CMS) for all devices that make up your network.

A good CMS will give you a highly integrable means of monitoring all your networks equipment including access points, switches, ONTs, etc. This is particularly useful if you do indeed have a large network or if you would like the ability to apply changes across the entire network with relative ease. Manageability is crucial.

Think long term.

The network should be flexible rather than rigid in its design. Think about the potential for growth and scalability of your deployments. Growth should be an easy move if you have planned it out right from the beginning. Our considerations when choosing the equipment that we would ultimately launch with factored in the usual key elements:

  • Cost
  • Support availability
  • Stage in the lifecycle
  • Availability of a CMS

But in addition to that we looked at the ability and ease with which we would be able to incorporate future projects such as a Dedicated Short-Range Communication (DSRC) network and Low-Power Wide-Area Network (LPWAN) to support the testing of autonomous vehicles and the collection of big data that will help us to understand the flow of traffic and tourists in the City.

Dream up creative applications to monetize your network.

Although servicing businesses, residential customers, and backhauling smart meter data is currently the main operation of our network it is not the only function. Stratford, Ontario has a thriving tourism industry and in order to meet the needs of people who are visiting the city we offer free wifi in the downtown core. Simply by connecting to “Stratford Free” people can watch video on energy conservation and then access a variety of information geared towards tourists such as what’s happening around town, information about the Stratford Festival and maps to help them navigate the city streets.

This is a project that never ends.

The last thought I would like to leave you with is that as long as technology is always changing and improving, and new ways to connect people are being created, you will want to be in a constant state of research and development. Once your network has been launched and you stand there for a moment surveying your successes, the thought running through your mind should not be that “it’s done”, instead you should always view yourself as being at the very beginning.

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Sustainability and Resilience: Not Quite the Perfect Relationship

Sustainability and Resilience: Not Quite the Perfect Relationship

People seem frequently to assume that the terms “sustainability” and “resilience” are synonyms, an impression reinforced by the frequent use of the term “climate resilience”, which seems to enmesh both concepts firmly.  In fact, while they frequently overlap, and indeed with good policy and planning reinforce one another, they are not the same.  This article picks them apart to understand where one ends and the other begins, and where the “sweet spot” lies in achieving mutual reinforcement to the benefit of disaster risk reduction (DRR).

Stormwater Management is an Equity Issue

Stormwater Management is an Equity Issue

As extreme weather conditions become the new normal—from floods in Baton Rouge and Venice to wildfires in California, we need to clean and save stormwater for future use while protecting communities from flooding and exposure to contaminated water. Changing how we manage stormwater has the potential to preserve access to water for future generations; prevent unnecessary illnesses, injuries, and damage to communities; and increase investments in green, climate-resilient infrastructure, with a focus on communities where these kinds of investments are most needed.

Public-Private Collaboration – Essential for Disaster Risk Reduction

Public-Private Collaboration – Essential for Disaster Risk Reduction

A few years ago, I worked with some ARISE-US members to carry out a survey of small businesses in post-Katrina New Orleans of disaster risk reduction (DRR) awareness.  One theme stood out to me more than any other.  The businesses that had lived through Katrina and survived well understood the need to be prepared and to have continuity plans.  Those that were new since Katrina all tended to have the view that, to paraphrase, “well, government (city, state, federal…) will take care of things”.

While the experience after Katrina, of all disasters, should be enough to show anyone in the US that there are limits on what government can do, it does raise the question, of what could and should public and private sectors expect of one another?

The Future of Cities

Mayors, planners, futurists, technologists, executives and advocates — hundreds of urban thought leaders publish on Meeting of the Minds. Sign up to follow the future of cities.

You have Successfully Subscribed!

Wait! Before You Leave —

Wait! Before You Leave —

Subscribe to receive updates on the Executive Cohort Program!

You have Successfully Subscribed!

Share This