Cities and Cars Running on Trash

By Frank Teng

Frank Teng is a current MBA in Sustainable Management student at Presidio Graduate School in San Francisco and is on the board of Sustainable Silicon Valley. He works with Jones Lang LaSalle, a global real estate services firm, to manage global energy and sustainability programs for corporate clients in the technology and financial services sectors. Please note: Frank's views are his own and do not necessarily reflect the views of his employer.

Jan 6, 2014 | Mobility, Technology | 2 comments

Many resources flow into cities to make them run; people, products, information, energy, water, food, money. What flows out? Products, air emissions, waste water, and of course, trash.  As more cities are discovering, both the waste water and trash can prove to be new sources of value creation as well as promising opportunities for closing the resource loop, taking them one big step down the path of sustainability.

Cities on islands are particularly good examples of managing trash, since space for landfills is in short supply and exporting general waste is cost prohibitive. Taiwan now has 2,000 recycling companies operating in a $2.2 billion market, as reported recently in the New York Times. The market is driven by fees on producers and importers that are then redistributed to recyclers. This has led to thriving markets and technology advancements particularly in recapturing and reprocessing waste from the electronics manufacturing sector, which often yields high value metals. This “urban ore” can yield as much gold in 1 ton as 5 to 15 metric tons of typical gold ore, and copper, aluminum and rare metals are similarly recoverable.  Even the compost in Taiwan is valuable for agriculture, and it’s not uncommon to place compost into refrigerated cases in apartment building garages to prevent odors and pest issues.

Fast growing cities with less formalized waste collection and processing systems have sometimes sprouted landfill communities that manually sift through the trash to glean items of value. One community in Paraguay received attention for remanufacturing its waste into instruments for a children’s orchestra. This isn’t foreign to U.S. cities, where bottle & can scavenging and even the rise of Freeganism point to the uncaptured value in our waste.

Compost to energy

Last month the first large commercial dry fermentation anaerobic digester was launched in San Jose, California to process 90,000 tons of organic waste annually and be a net energy generator of 1.6MW of renewable energy. Two future phases will increase the waste processed and energy generated to 4.8MW, creating enough to feed back into the electricity grid. The project is the result of collaboration between four entities: the city, which provided land, a waste collector, a resource management and processing company, and technology provider. It took strong leadership and a clear vision to make this type of investment, but this is just the start.

These projects have triggered wide interest in this technology, as a new facility is now planned for South San Francisco which will be able to divert almost 95 percent of organic waste feedstock from landfills. Each collection vehicle will collect enough organic waste during one route to fuel it for an entire day on compressed natural gas, creating a closed loop system. And since the anaerobic digestion process saves at least a ton of greenhouse gases for every ton of food waste diverted, there is a clear carbon impact.

On the East Coast, Massachusetts is deploying digesters at facilities like dairy farms, municipal landfills and wastewater treatment plants. Over the past year, the Massachusetts Clean Energy Center has awarded 18 grants worth $2.3 million to study, design and construct anaerobic digesters and other organics-to-energy facilities across the state. With a new commercial food waste ban going into effect July 2014, many states will be watching Massachusetts’ progress.

In addition to the focus on food waste, methane recapture from landfills is another significant source of energy which is reaching scale through companies like Clean Energy Fuels, which is distributing a renewable natural gas vehicle fuel to fleets throughout the country and 35 public stations in California. Renewable Natural Gas, or RNG, could become the next new fuel source created by large dairies, landfills, and sewage plants. Every city can create value off the back-sides of their residents.

Can recycling be made public?

Of course, processing the wastes may be relatively straightforward compared to the collection process. Most cities are targeting commercial or residential sectors to get access to the most concentrated and purest waste streams. New York officials are working to launch a cloud-based software platform that will track waste and evaluate it for more efficient pickup or delivery, in support of their Food Waste Challenge which has diverted 2,500 tons of waste from 100 restaurants over six months. At that rate, San Francisco could divert up to 133,000 tons, which amounts to 26,000 elephants, saving significant costs in the process.

However, outside of our homes and workplaces public recycling infrastructure is still proving to be a challenge in recovering clean waste streams. High rates of contamination stymy most attempts at composting or recycling. Making bins visible and intuitive is difficult across varied city infrastructure such as parks, transit hubs, libraries, and city facilities. Perhaps this is an area ripe for innovation in the cities of tomorrow. Public space recycling, sometimes called recycling on the go (“ROGO”), faces challenges in being simple to follow, widely available, and cost effective. Recycling bins could potentially serve dual purposes such as parking kiosks (recycle two cans and get 30 minutes of parking), WiFi hubs, or sculptural pieces. From a public engagement standpoint, participation metrics like this bike counter that has been deployed in Copenhagen, Seattle, and San Francisco could even be leveraged.

Of course, some cities have been removing trash bins in sensitive areas due to security concerns that they could serve as potential targets for explosive attacks. The remedy might be to use plastic bags suspended from hoops which have an added benefit of showing the type of trash or recycling and how full it is, or investing in bomb-proof trash cans.

In actuality, public space recycling might come down to a few simple principles, as noted in this America Recycles Day site which has information for cities on applying for grants, design toolkits, and mapping recycling bins. The best practices guide boils the process down to ten tips, starting with understanding the waste stream (is it a stadium or a library), selecting bins, and deploying communications. Public space recycling may prove challenging to get a clean waste stream such as compost, but the main opportunity could be in public education and engagement.

Just like many industrial and consumer products companies now are finding value as they strive to achieve zero waste, trash can be a raw material for cities. Future infrastructure such as park benches, bike racks, and bus stops can be made from local, recycled material, just as recycled polyester is making it into jeans, backpack, and other gear. Or if there’s enough nostalgia then selling trash is always an option, as the San Francisco 49ers football team is with their old stadium seats.

At the W hotel in Taipei, 300,000 plastic water bottles are being turned into coasters, games and key- and change-holders for use throughout the property, with the help of local designers who had been awarded grants from the Taipei city government. With enough creativity and participation cities can surely find more dollars in their waste.

Discussion

Leave your comment below, or reply to others.

Please note that this comment section is for thoughtful, on-topic discussions. Admin approval is required for all comments. Your comment may be edited if it contains grammatical errors. Low effort, self-promotional, or impolite comments will be deleted.

2 Comments

  1. Great post Frank. We struggle as a company in the US because a lot of our mfg locations are in more rural areas, which lead to a lot fewer choices when disposing of waste. Once we start transporting our waste many miles away, the economics of recycling become harder to justify to the bottom line. I view cities as having it easy in comparison…

    Reply
    • Great point Ryan, though I see cities as having a similar problem when waste processing/disposal sites are increasingly pushed further outside city boundaries due to high costs. I believe this is a big issue in NYC, where wastes have to be transported 2 states away. Maybe rural areas can be test beds for processing waste into transportation fuel, like the South San Francisco example in the article above.

      Reply

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from MeetingoftheMinds.org

Spotlighting innovations in urban sustainability and connected technology

Stormwater Management is an Equity Issue

Stormwater Management is an Equity Issue

As extreme weather conditions become the new normal—from floods in Baton Rouge and Venice to wildfires in California, we need to clean and save stormwater for future use while protecting communities from flooding and exposure to contaminated water. Changing how we manage stormwater has the potential to preserve access to water for future generations; prevent unnecessary illnesses, injuries, and damage to communities; and increase investments in green, climate-resilient infrastructure, with a focus on communities where these kinds of investments are most needed.

12 KPIs to Evaluate Success of Urban Micro-mobility Programs

12 KPIs to Evaluate Success of Urban Micro-mobility Programs

In the past few years, micro-mobility services have been arriving at unprecedented speed and scale to cities that are oftentimes ill-prepared to manage them. Typically, these services are introduced by private operators and are deployed as a “floating” system, meaning that only the vehicles themselves are physically present in public spaces. Legislation does not clearly define these new vehicles, and new business models do not fit neatly into existing methods of managing private businesses in public spaces.

The transportation community has responded by producing several helpful publications on the topic of micro-mobility, bringing more clarity and understanding to this phenomenon, documenting the growth and expansion of programs in cities, and providing guidance on good practices.

At Ramboll Smart Mobility we wanted to push the discussion away from general statistics about micro-mobility, and towards the identification of strategic goals and tangible key performance indicators (KPI). The KPIs can be measured by any city to better understand how successful and sustainable they are in providing new mobility options to their communities, and where they can improve.

Complex Climate Problems Call for Multi-Sector Solutions

Complex Climate Problems Call for Multi-Sector Solutions

It is increasingly clear that climate resilience cannot, and should not, be divorced from economic resilience. The siloed sectors that have worked to solve environmental problems in the past will not be enough to tackle our existential climate change challenges, which are intertwined with our racial and economic inequality. In Seattle, the team is supporting the development of a community-governed entity that will direct and leverage public, philanthropic, and private investments to create climate justice and economic opportunity while mitigating displacement. They are already advancing a pipeline of projects, including parks, housing, and neighborhood facilities, that will serve as a proof of concept for following a different process that centers community priorities. 

Share This