The Limits of Data

By Colin Harrison

Dr. Harrison is an IBM Distinguished Engineer Emeritus and was most recently the inventor of IBM’s Smarter Cities technical programme. He was previously Director of Strategic Innovation in IBM Europe and Director of Global Services Research. He is an IBM Master Inventor and a Member of the IBM Academy of Technology. He retired in January 2013 from the IBM Corporation.

Sep 20, 2017 | Society, Technology | 5 comments

My friend J. is dying. Or perhaps not. We don’t know. Two months ago J. was a healthy and active retiree.  He looked after his grand children and took care of a large garden. Then one day he fell at home and was admitted to hospital. Suddenly this fit, former Navy pilot was weak. He slept almost the entire day. He had no appetite for food. It was a mystery.

So began a continuing regime of testing. By now J. must have been tested for every known medical condition except rabies. Endless blood tests, two MRI scans, and a miniature camera that he swallowed and that passed through his entire alimentary canal. We must have more medical data on J. than almost any other person in history. He has made some progress towards recovery, but we still do not know the cause of his weakness.

The human body is a complex system of systems at spatial scales from cells to the whole body.  Until thirty or forty years ago, we had little understanding of how these systems work in principle nor of how they are working in a specific case. For centuries doctors had treated symptoms – fever, chills, fatigue, physical injuries – with increasingly sophisticated drugs and procedures and often with surprising success considering the lack of understanding on which these treatments were based.

Beginning in the late 19th century clinical biology became an analytical science, rapidly diversified into a myriad specialties, and produced powerful new diagnostic tools, drugs, and other treatments. In some areas, such as the cellular level, we have detailed – though still incomplete – knowledge of what different kinds of cells do and how they achieve this at the molecular level.  But at the level of an actual, whole body, such as my friend J., we still cannot explain cause and effect as these systems interact.

More data does not help without more understanding.


 

When the idea of smart cities was born, some ten to fifteen years ago, engineers, including me, saw it primarily as a control system problem with the goal of improving efficiency, specifically the sustainability of the city. Indeed, the source of much of the early technology was the process industry, which was a pioneer in applying intelligent control to chemical plants, oil refineries, and power stations. Such plants superficially resemble cities: spatial scales from meters to kilometers, temporal scales from seconds to days, similar scales of energy and material inputs, and thousands of sensing and control points.

It would be impossible to operate a process plant without smart controls. Such plants manage the reactions of precisely balanced mixtures of raw materials under carefully controlled temperatures and pressures, sometimes in the presence of catalysts that dramatically speed up a reaction. Further, such plants are not running a single process, but are in fact chains or networks of processes, in which the secondary outputs from one process become primary inputs into another process, thereby improving efficiency. Beginning in the 1970s, distributed real-time process control systems were developed to keep these processes under close control in response to changes in the quality of raw materials, the decline of catalysts, and variations in ambient temperature, air pressure, air humidity, and solar heat gain or loss.

So it seemed quite natural to extend such sophisticated control systems to the management of cities. The ability to collect vast amounts of data – even in those pre-smart phone days – about what goes on in cities and to apply analytics to past, present, and future states of the city seemed to offer significant opportunities for improving efficiency and resilience. Moreover, unlike tightly-integrated process plants, cities seemed to decompose naturally into relatively independent sub-systems: transportation, building management, water supply, electricity supply, waste management, and so forth. Smart meters for electricity, gas, and water were being installed. GPS devices were being imbedded in vehicles and mobile telephones. Building controls were gaining intelligence. Cities were a major source for Big Data. With all this information available, what could go wrong?

Indeed this approach has shown modest success. Total energy and water consumption can be reduced by 10-15%. Peak demands can be smoothed even more effectively. Adaptive tolls can reduce inner city congestion. Bus arrival times can be predicted and communicated to passengers. Leaks in water mains can be located. Crime can be managed, if not reduced. Valuable as these and other achievements are, they are not yet the spectacular results for which we hoped.

Reflecting on this, I feel that we are in the position of the doctors trying to help my friend J.  Like them, we have vastly more information available about the patient, but we still have only limited understanding of how these systems of systems actually function.  We have data, but we lack theories that provide understanding across multiple scales.

Further, a process plant is only a partial model for a city. For all their complexity, the networks of reactions are deterministic within well-established process windows. Cities too have predictable behaviours over certain temporal and spatial scales, but these macro-behaviours are emergent and not determined by any physical laws. These emergent behaviours result from the natural and technological infrastructures of the city and from the myriad decisions of imbedded intelligent beings – people – on how to exploit the city’s systems and sub-systems. Moreover, these people have individual views of how the city’s sub-systems should be used. These conscious or unconscious decisions constitute a natural control system for the city that is far more powerful than our technology.

To be sure, many of the smart city solutions attempt to intervene within that natural control system.  For example, providing user feedback on electricity or water consumption can – at least for a time – influence consumption. But like my friend’s doctors, we have poor knowledge of how those systems of systems interact below the level of major organs – how they attempt to re-establish physiological normalcy, how big their process windows are, beyond what limits will they tip over into a new state, how reversible such states are, how and to what will they respond to external physical or psychological stimuli.

Treating the symptom is a medical practice dating back centuries if not millennia. In many cases it can be remarkably effective and, in combination with chemical and bio-chemical science , it has produced dramatic improvements in human life-expectancy. To achieve the next level of impact on how cities work, we need to go beyond nudging the symptoms and to understand the life of the city as an ecosystem.

Today a multitude of researchers and clinicians all over the world is studying these systems with myriad hyper-specialties. Yet it is hard, perhaps impossible, to integrate this medical Tower of Babel into an overall theoretical framework for the entire body owing to differences of scale, of terminology, of methodology.

The study of cities suffers from a similar diversity of specialties. Ecologists, environmentalists, geographers, architects, planners, engineers, economists, sociologists, anthropologists, political scientists, and still others all produce profound work concerning the city, yet we have no way to see the wood for the trees. As in medicine, the study of cities lacks an overall theoretical framework. As Richard Saul Wurman observed to me some years ago:  “We cannot even agree on the definition of a city.”

Yet out of this rather pessimistic view of cities and technology gleams a ray of hope.  While I am deeply skeptical of the more grandiose claims of Artificial Intelligence (AI), I am strongly in favour of Augmented Intelligence or Intelligence Amplification (IA) – the collaboration between machine intelligence and human specialists.  Soon after IBM’s Watson achieved success in the Jeopardy! quiz game, the project was applied to seek understanding from clinical and biological data in order to design optimal treatment plans for individual patients. Similar data-intensive approaches have been applied to trying to understand diseases in terms of genetic patterns.

These experiments proved much harder than IBM anticipated.  Analysis of Big Data can provide important clues – finding needles in haystacks – but it seems to require humans to assemble those needles into theoretical frameworks.  Machine intelligence is likely also to be the vehicle for integrating the human intelligence from the many disciplines that study cities.

So while process control may have been only partially successful in applying machine intelligence to cities, I remain confident that through Augmented Intelligence we will develop an overall theory of cities that will provide far deeper insights into how technology can help cities achieve their goals.

Discussion

Leave your comment below, or reply to others.

5 Comments

  1. An excellent assessment of the potential benefits of thinking about smarter, more self aware urban systems (a necessary precondition for more reliable and resilient communities.) Further, the article begs the question “is being smarter (better data) the same thing as being more wise about systems intersects and investment priorities? We speak at length about smartness but little about the application of wisdom in addressing our behavioral choices and resource allocations.

    In my work I try to work through a decision framework : What is the nature of the problem and is it a priority for those who need to change given limits to resources? Who are we today really as opposed to the lies and misstatements we say about ourselves and others? Who is it that we want our community or society (or selves) to become? How does data accurately inform these questions and create metrics to measure change and signal the need to adapt when the data proves self limiting?

    Thank you for providing such thought provoking discussion.

    Reply
  2. Thank you for this fantastic framework to think about smart cities Colin. The parallel comparison to a sick body is really helpful as we think about what “system of systems” really means for cities. That term is thrown around a lot and now we have a real visual for it. This part really struck me because these are just the actors in the city that we are working to convene and bring together through Meeting of the Minds: “Ecologists, environmentalists, geographers, architects, planners, engineers, economists, sociologists, anthropologists, political scientists, and still others all produce profound work concerning the city, yet we have no way to see the wood for the trees.” We really believe, like you, that we can’t discuss smart cities, or even cities at all, unless we work together across sectors and disciplines and silos, as you say above. That’s hard to do and it’s a messy process and as you say, harder than we anticipated, but we are at an exciting moment with the emergence of IA and perhaps just the emergence of waking up to all this.

    Reply
  3. Mr. Harrison,

    A thoughtfully written essay that answers some questions while raising others and failing to answer the most basic question: Why? (I pose the same question about Jeopardy!, chess or Go-winning algorithms: Why?) AI interventions that reduce or more effectively regulate consumption and flows are very useful, even crucial (I’m not a luddite), but if you liken the city itself to a sick body, the city becomes a patient, not a continuous social project in which humanity works out its values, priorities and passions.

    And to answer my own question (and offer food for thought) AI/IA can be help or cleverly disguised hubris.

    Reply
  4. Thanks Colin, a very provocative piece, and I’m having a hard time getting back to my other work after reading it. All this data available from the Smart City has limited utility when it lacks a good theory to organize it.

    You make a good point about the macro-behaviors in the city emerging from the interactions of individual citizens with the urban systems. I did my training as a social psychologist working in group dynamics and in my current work in smart cities, understanding how individuals interact with urban systems — natural, physical and social — would be greatly assisted with data from historic and real time measurements in a smart city.

    The sheer number of variables inherent in individual, social and political interactions adds layers of complexity to a theory of smart cities. But like you, I’m looking forward to developments in augmented intelligence and how it can help us engineer smart urban systems that enable cities and citizens achieve their goals.

    Reply
  5. A good piece.
    It is critically important to find out what is a real smart city, and if it is data-, people-, infrastructure-, economy-, or technology-driven.
    A real or true smart city is to be a unified urban entity with its critical subsystems planned, developed and managed as its integral parts.
    A truly smart city is three innovative cities in one, the Urban Trinity of Information Cyber City, Intelligent/Knowledge City and Ecological/Clean city, but run by AI infrastructure.
    AI is taken as a consolidation of state-of-the-art technologies covering:
    Automated intelligence: Automation of manual/cognitive and routine/nonroutine tasks.
    Assisted intelligence: Helping people to perform tasks faster and better.
    Augmented intelligence: Helping people to make better decisions.
    Autonomous intelligence: Automating decision making processes without human intervention.
    https://www.pwc.com/gx/en/issues/analytics/assets/pwc-ai-analysis-sizing-the-prize-report.pdf
    html https://www.slideshare.net/ashabook/encyclopedic-intelligence-deep-ai
    https://eu-smartcities.eu/blog/what-not-smart-city

    Reply

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from the Meeting of the Minds Blog

Spotlighting innovations in urban sustainability and connected technology

Managing the Transition to Shared Automated Vehicles: Building Today While Designing for Tomorrow

To plan for the transition to automated vehicles, cities and county governments should develop building and zoning codes that not only accommodate adaptable parking but encourage it by design. This can include amending building codes to require infrastructure that makes transforming garages into inhabitable buildings possible. As automated vehicles begin to enter the marketplace, cities should consider incentives and other programs to begin the conversion of ground level parking to commercial uses.

A Future Ready Transportation Plan for the Greater Toronto Region

For much of the twentieth century, transportation planning focused on moving cars as efficiently as possible. This resulted in streets that are designed for cars, with little room for transit vehicles, pedestrians and cyclists. Agencies in charge of roads, signals, parking, taxis and transit need to collaborate more closely to focus on moving people, not just vehicles, as efficiently as possible.

Focusing on all the elements that matters to people not just travel time – It is clear that people travelling across the region have high expectations and want to have consistent, reliable, convenient, clean and low-cost travel options regardless of their preferred mode and what municipal boundaries they cross. People care little about what system they are on or who operates it—they simply want to get where they are going as quickly, comfortably and reliably as possible.

4 Tested Techniques to Catalyze Small Town Redevelopment

Driving into a town with a boarded-up Main Street or a row of abandoned factories make it look like the community has been the victim of a destructive economic process. In truth, the devastation that is apparent on the surface is really a symptom of deeper social and institutional problems that have been going on for a very long time. I have four strategies for you to make your rural redevelopment projects successful.