Smart Trash

By Daniel Obodovski

Daniel Obodovski is currently finishing work on a book co-written with Daniel Kellmereit of Detecon USA called “The Silent Intelligence” – The Internet of Things. Previously, Daniel was Director of Business Development at Qualcomm, where he led commercial launch of multiple M2M products and businesses. In 2011 he co-founded, and currently co-chairs, M2M SIG at CommNexus San Diego.

May 15, 2013 | Urban Sustainability | 3 comments


I was recently asked, “What makes you excited about the Internet of Things?”

Some analysts predict that the IOT will grow to 50 billion devices by 2020. In GE’s recent study, Industrial Internet, it forecasts that the Internet of Things will generate trillions of dollars in productivity savings.

I don’t know about you, but it is not the numbers that get me excited. For one thing, there is a high probability that these numbers will prove to be wrong. They are either going to be too high or too low compared to what will actually happen in reality. If we look at similar predictions about the future of technology from the past – the numbers will most likely be too conservative. Most technology growth forecasts prove to be too optimistic in the short-term and too conservative in the long term.

In the meantime, as the technology community is wondering which year is going to be the breakthrough for the Internet of Things, a lot is already happening quietly in the background. Here are just a few examples of the explosion of the IOT economy or Smart Cities:

  • Connected Homes
  • Connected Cars
  • Smart Parking Systems
  •  Smart Transportation Systems
  • Smart Lighting
  • Building Automation.


And they are all affecting the way we live in our cities today.

Smart Trash

Last, but not least, there is Smart Trash – or the monitoring of the “removal chain” in Smart Cities. That’s what I want to talk about today.

Several years ago, I was working on a dedicated GPS-tracking product at Qualcomm. The team was getting close to the commercial launch when somebody approached me and told me about a project the MIT SenseableCity Lab was working on. It was about tracking trash and I was asked if we were interested in supporting it.

My initial reaction was: “Of course not. First, we are extremely busy getting ready for a commercial launch and second, who on earth wants to track trash?” Yet, I met with the MIT team and that meeting changed my perception of what technology can do for our environment.

“Are you aware what a big deal supply chain management is and how much money is spent annually on its optimization?” one of the project leaders asked.

I responded that, even though I did not know the exact amount, my assumption was that it was rather substantial.

“That’s right,” – continued my counterpart – “now imagine the removal chain or what happens to things as they are being disposed. Do you think they just disappear?” I had no answer. “Don’t you want to know where the trash goes after it has been disposed and how much time it spends there or which routes it takes?”

Well, he definitely got my attention with that and the potential of this project quickly became clear to me.

Efficient Piles of Garbage

As cities become larger and more populated and as the population becomes wealthier, our consumption grows dramatically as well – leading to disposal of more and more stuff. It takes more and more energy to deal with all the piles of garbage. As we increase the share of what can be recycled, understanding the efficiency of garbage removal and disposal becomes more and more critical.

And by garbage removal and disposal we not only mean the green garbage truck that drives around your neighborhood once a week and can be tracked by GPS, but also the individual pieces of waste – electronic, toxic, recyclable and non-recyclable items like old TVs, batteries, Styrofoam cups, plastic and many other things. What happens to them after they disappear in the belly of that garbage truck?

We  agreed to support the MIT project and as a result had the chance to work on one of the most exciting things in our life. We agreed to put several thousand tracking devices onto pieces of trash and track them in real time with cloud-based software.

Project Results

The project also had a nice side-bonus for us. In lab tests, our tracking devices demonstrated several months of battery life but testing battery life live in the field was cumbersome, especially with so many devices. The TrashTrack project gave us that testing opportunity. I remember asking my MIT counterpart how much battery life he expected out of the devices. His answer was, “I don’t think that trash needs more than 2 months, but who knows.”

In reality, no one knew, because no one had ever before tried to track trash in real time. Imagine our surprise when 5 months after disposal some devices were still sending position reports.

As a matter of fact, we discovered that electronic waste travels all the way from Seattle to Florida to be disposed, just because Florida has state sponsored e-Waste facilities. That seems very counter-intuitive and inefficient.

We also found out that although 80% of trash disappeared in the landfill within the two weeks, 20% continued to move around for quite some time. Some went from Seattle to Chicago and then to the Mexican border to be disposed.

Smart-TrashThe MIT team built a powerful computer visualization demonstrating the paths that different types of garbage took across the country. The results were published in Science Magazine and received a prestigious National Science Foundation award in 2010. But most importantly, it drew the attention of millions to the issue of what is happening with our trash once it is out of sight and how to optimize its flow and to accommodate growing consumption.

For us, it also demonstrated the power of technology in solving everyday problems, removing guesswork and providing hard data one can make decisions on. It also opened the world of opportunities for creating smart devices – devices that sense their environment, act upon the information, and share their findings with the cloud and the public.

So, going back to my original question – what makes me excited about the Internet of Things? I would say it is the opportunity to change our lives for the better, to learn about our environment and ourselves and, finally, to take a peak into our future.

 

Discussion

Leave your comment below, or reply to others.

3 Comments

  1. Jessie Feller

    I’ve been hearing about this ‘smart trash’ project for a while now. Genius stuff. Has there been any movement since the project to streamline the trash lifecycle by national, state or local governments?

    Reply
    • Miles Moore

      I agree with Jessie — streamlining the trash life cycle is important! But it should begin with the manufacturing process — using ‘smarter’ packaging with a shorter half-life to accelerate green breakdown in the land-fill; and unfortunately, our vast waterways.

      Reply
  2. Paul Ledesma

    I have worked on solid waste, recycling, composting, zerowaste, and other environmental issues for over twenty years. I think this project demonstrates a tool that may have a use in understanding waste generation and flows of specific products and materials. When trying to understand how the majority of hetrogeneous waste moves around, I expect its use is more limited and there might be more efficient ways of obtaining the same data. The key solid waste questions most cities are dealing with are: (1) how do we reduce the amount of garbage that needs to be buried? (2) Where do we put our garbage? (3) How do we cope with an increasing amount of special waste that’s difficult to divert from landfills? It’s this last question where I think this application of technology may have a role.

    However, the first two questions have to do with individual consumer choices and the appropriate amount of responsibility that manufacturers should assume for the products we all consume. These are very complex and difficult problems to address. By 2025, the World Bank estimates that global trash generation will increase 70% over the amount being generated today. In the US, the rate at which we divert trash from landfills is flat while trash generation rates increase exponentially. Our inabilty to cope with the amount of garbage we produce is a little understood problem that is spilling over into our local watersheds, estuaries, and our oceans. The tool you have produced may be able to provide data to help better manage some aspects of this problem. But, I fear the fundamental problem is an existential one that technology can’t fix.

    Reply

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from the CityMinded.org Blog

Spotlighting innovations in urban sustainability and connected technology

Big Data, Automation, and the Future of Transportation

In recent years, a variety of forces (economic, environmental, and social) have quickly given rise to “shared mobility,” a collective of entrepreneurs and consumers leveraging technology to share transportation resources, save money, and generate capital. Bikesharing services, such as BCycle, and business-to-consumer carsharing services, such as Zipcar, have become part of a sociodemographic trend that has pushed shared mobility from the fringe to the mainstream. The role of shared mobility in the broader landscape of urban mobility has become a frequent topic of discussion. Shared transportation modes—such as bikesharing, carsharing, ridesharing, ridesourcing/transportation network companies (TNCs), and microtransit—are changing how people travel and are having a transformative effect on smart cities.

Smart Cities and the Weather

A study by the US National Center for Atmospheric Research (NCAR) in 2008 found that the impact of routine weather events on the US economy equates annually to about 3.4% of the country’s GDP (about $485 billion). This excludes the impact of extreme weather events that cause damage and disruption – after all, even “ordinary” weather affects supply of and demand for many items, and the propensity of businesses and consumers to buy them. NCAR found that mining and agriculture are particularly sensitive to weather influences, with utilities and retail not far behind.

Many of these, disaster management included, are the focus of smart city innovations. Not surprisingly, therefore, as they seek to improve and optimize these systems, smart cities are beginning to understand the connection between weather and many of their goals.  A number of vendors (for example, IBM, Schneider Electric, and others) now offer weather data-driven services focused specifically on smart city interests.

Meeting of the Minds is made possible by the generous support of these organizations.