Seven Factors Behind the Rise of the Smart City Era

By Rick Azer

Rick Azer is Director of Development for Black & Veatch’s Smart Integrated Infrastructure Group. Rick’s role is to identify new trends, establish solution architecture, support ecosystem development, and system integration capability to successfully bring these programs to market. Rick received his Master of Business Administration from Washington University in St. Louis, and a Master’s of Architecture and a Bachelor of Science in Design. He is passionate about the application of communication technology to infrastructure and the advancement of Cleantech initiatives.

Jan 12, 2015 | Urban Sustainability | 2 comments

The future urban infrastructure is intelligent, connected, and aware. Today’s wireless networks and data platforms play an ever-increasing role in the integrated infrastructure landscape and provide momentum to the rise of the Smart City Era. Several familiar factors are converging to produce effective operations of decentralized infrastructure and provide new opportunities for efficiency, control, and situational awareness. While each factor has been around for some time, the combination of these factors is enabling rapid change to smart city infrastructure and services. This swift transformation is extending the edge of the industrial network, creating new terrain for engineering and IT companies. The industrial network is adapting beyond its traditional boundaries of transport. As these new layers become accessible, engineers are deriving value and intelligence from products and services related to implementation of edge devices, and the collection and interpretation of endpoint data.

These seven factors interweave to form a communication fabric that is transforming our cities:

  1. Pervasive wireless coverage.
  2. Transformation of public carrier business plans to accommodate the Internet of Everything.
  3. Miniaturization of processors and the integration of communication modules into intelligent devices.
  4. Abundant cheap data storage and processing power.
  5. Rise of cloud computing and edge computing.
  6. Access to vast data streams enabling potential for rich analytics.
  7. Extensive improvements in application development and visual display capabilities.

Coverage, Coverage Everywhere!

Public carriers spend billions of dollars each year to expand and improve their network coverage. Until recently, the cost and complexity of connecting end devices via point-to-point links or SCADA connections limited the number of connected devices. Most cities now have 4G LTE system upgrades optimized for high speed data. This extensive public carrier coverage provides a backbone of transport for sensors and control elements and vastly reduces the cost of establishing a data link between a remote device, its data depository and its control source. Optimized, pervasive wireless coverage means more people will have smarter field devices, which vastly expands the opportunity for rich awareness of field conditions.

Expanding the Internet of Everything

Public carriers realize that sensors and other machine-to-machine (M2M) wireless endpoints are a unique class of devices that should be distinguished from other types of data plans. Carriers are embracing the idea that cheaper data plans enable more M2M devices. While these devices are network-connected most of the time, they generally transmit only small amounts of data at any given time, which adds negligible marginal traffic to the network. As a result, carriers earn more revenue with no additional network expense. These two factors, cheap data plans and pervasive wireless coverage, help push the idea that everything that can be connected will be connected—a basic tenant of the Internet of Everything. The evolutionary upgrade of device addressing from IPv4 to IPv6 also generates Internet growth by vastly increasing the number of connected hosts and the amount of data traffic transmitted. Advanced features like quality of service and auto-configuration make it even easier to add wireless endpoints into a network.

Big Processing in Small Packages

Today’s wireless device platforms, like Qualcomm’s Gobi, offer multi-radio communication modules and high-speed processing within a single chipset. Processors continue to shrink in size and increase in capacity, and many are designed specifically for power efficiency that remote sensors and other battery powered equipment require. The miniaturization of these modules allows their integration directly into edge devices. Moreover, the processors already within these chips render those devices intelligent for a fraction of the cost of traditional system integration. The integrated communication module facilitates rapid expansion of the Internet of Everything, as the cost of connected, intelligent devices becomes marginal. Toasters, refrigerators, pressure relief valves, streetlights and parking meters can be network-connected without a separately powered communications device. Today’s M2M chipsets can process, store and transmit data independent of additional computing hardware, and independent battery powered sensor devices can now be configured to transmit data for a period of years.

Cheap Bytes

Each year storage and processing becomes cheaper and more abundant. Consumers can purchase an external hard drive with two terabytes of storage for a fraction of historical storage costs, and online products, like Dropbox and iCloud, provide cheap storage in the cloud. Commercial versions of these devices and online services can store massive amounts of data facilitating greater degrees of processing and analytics. Products like OSIsoft’s Pi system serve as depositories and data historians for archived data received from the field.

Computing on the Edge…and in the Cloud

As data usage explodes exponentially, cloud computing grows as well. Today, everyone with a smart phone or tablet uses cloud computing when they open apps as they surf the net. Large amounts of data are securely transmitted and stored at remote data centers, allowing cheap, widespread use of information. Many companies cannot keep up with this big data explosion and look to automation guided by established rules to manage the blasts of data. The processing power now embedded within sensors and devices allows rules to be delegated downstream; data that meets conditions can be edge-processed locally, greatly reducing the amount of data that needs to be transmitted back. Both edge and cloud computing allow for exponential growth of field devices through more efficient data processing. They pave the way for alternate business models such as Software as a Service and the rise of artificial intelligence.

Vast Data Streams and Rivers of Rich Analytics

Supported by pervasive wireless coverage and robust processing power, the number of devices and frequency at which they collect data is ever-increasing. The time slices of information are becoming narrower. With edge processing, when certain conditions are met, devices can be instructed to collect and transmit data in a timescale closer to real-time, allowing for greater awareness and situational understanding of field conditions. This capability can greatly reduce operational costs by eliminating truck rolls to understand a remote issue. A wider set of data with more granular information allows analytic engines like Black & Veatch’s Asset360™ platform to create operational intelligence and facilitate adaptive planning to maximize system operations. Analysis of performance data can reveal operational trends that can reduce the likelihood of equipment failure.

There’s an App for That (and for THAT, too!)

Smart phones, tablets, conventional laptops and work stations are sources for interface, display and control. At home, people use them to access a wide array of services and information from fitness devices to alarm systems. The application development process has become simplified, and visual display capabilities have improved. With the advent of HTML5, application development opportunities will evolve even further. Our smart devices have morphed into a combination remote control-information display- social media communicator. With applications like the traffic navigator WAYZ, users help gather near-real-time traffic information, layering dynamic situational awareness on top of static sensors. In some cities, citizens can use their smart devices to photograph and report potholes and other street maintenance issues directly to municipal operations for repair.

Smart Integrated Infrastructure

These seven factors converge to become part of a smart integrated infrastructure that is more distributed, connected and intelligent. This infrastructure allows access into new network terrain where previously inaccessible endpoint data can now be captured from the network edge. Engineering companies can derive greater value from this widespread connectivity and can be involved with application layer systems that ride across the network. Engineering and IT companies can provide richer service offerings and greater operational insight for customers who want to improve performance or sustainability. Cities and utilities want to capitalize on emerging analytics to become more aware, linked, efficient and resilient—capstones of the Smart City revolution. As the infrastructure evolves, so must approaches to design, engineer and operate this infrastructure operate this infrastructure to gain full benefit that these converged capabilities and emerging technologies provide.


This article has been translated into Spanish.

Siete factores detrás de la subida de la época de “la ciudad Smart”

La infraestructura urbana del futuro es inteligente, conectado, y consciente. Las redes inalámbricas y las plataformas de datos tienen un papel cada vez mayor en la infraestructura integrada y proveen potencia a la subida de la época de “la ciudad Smart”. Varios factores conocidos se están juntando para producir operaciones efectivas de una infraestructura descentralizada y para proveer oportunidades nuevas de eficacia, control, y conciencia situacional. Si bien cada factor ha existido durante bastante tiempo, la combinación de estos factores permite un cambio rápido hacia la infraestructura y los servicios de la “ciudad Smart”. Esta transformación rápida se extiende hacia la frontera del sistema industrial, creando terreno nuevo para las compañías de ingeniería y las TICs. El sistema industrial se adapta más allá de sus límites tradicionales del transporte. A medida que estas capas nuevas se hacen accesibles, ingenieros derivan valor e inteligencia de productos y servicios relacionados a la implementación de dispositivos de frontera y la colección e interpretación de los datos finales.
Estos siete factores entretejen para formar una tela de comunicación que transforma nuestras ciudades:

  1. Cobertura inalámbrica ubicua
  2. La transformación de los planes de negocios de los operadores públicos para acomodar el Internet de Todo
  3. La miniaturización de los procesadores y la integración de los módulos de comunicación hacia dispositivos inteligentes
  4. El almacenamiento abundante y barato de datos y la potencia del procesamiento
  5. La subida de la computación en nube y en frontera
  6. El acceso a la transmisión de datos vasta que permite la posibilidad de analítica robusta
  7. Mejoras extensivas en el desarrollo de programas y en las capacidades de visualización

Cobertura por todos lados

Los operadores públicos gastan mil millones de dólares cada año para expandir y mejorar su cobertura. Hasta hace poco, el precio y la complejidad de conectar dispositivos finales vía enlaces de punto a punto o conexiones SCADA limitó el número de dispositivos conectados. Ahora, la mayoría de las ciudades tienen actualizaciones 4G LTE del sistema que son optimizadas para los datos de alta velocidad. Esta cobertura extensiva de operadores públicos provee una estructura de transporte para sensores y elementos de control y reduce enormemente el coste de establecer un enlace de datos entre un dispositivo remoto, su dispositivo de datos, y su fuente de control. Cobertura ubicua y optimizada significa que más gente tendrá dispositivos funcionales más Smart, lo cual expande enormemente la oportunidad para una consciencia robusta de condiciones del ambiente.

Expandir el Internet de Todo

Los operadores públicos se dan cuenta de que los sensores y otras terminales inalámbricas M2M (máquina a máquina) son un especie de dispositivos que se deberían distinguir de otros tipos de planes de datos. Los operadores abrazan la idea de que planes de datos más baratos habiliten más dispositivos M2M. Si bien estos dispositivos están conectados a la red durante la mayoría de las veces, en general transmiten solamente pocas cantidades de datos en un momento dado, lo cual contribuye tráfico insignificante a la red. Como resultado, los operadores ganan más ingresos sin gastos adicionales de la red. Estos dos factores, planes de datos baratos y cobertura inalámbrica ubicua, refuerzan la idea de que todo que pueda estar conectado estará conectado—un principio fundamental del Internet de Todo. La actualización evolucionaria del direccionamiento IPv6 de IPv4 también genera el crecimiento del internet por aumentar enormemente el número de servidores y la cantidad del tráfico de datos transmitida. Características avanzadas como la calidad del servicio y la configuración automática hace que añadir terminales inalámbricas a la red sea aun más fácil.

Procesamiento grande hecho en miniatura

Las plataformas de hoy de dispositivos inalámbricos, como Gobi de Qualcomm, ofrecen módulos de comunicación multi-radio y procesamiento de alta velocidad en un solo chipset. Los procesadores siguen reduciéndose y aumentando en capacidad, y muchos son diseñados específicamente para la eficacia de energía que requiere otro equipo que funcione con pilas. La miniaturización de estos módulos permite su integración directa a los dispositivos de frontera. Además, los procesadores que ya existen en estos chips les hacen inteligentes por una fracción del coste de la integración del sistema tradicional. El modulo de comunicación integrada facilita la expansión rápida del Internet de Todo mientras el coste de dispositivos inteligentes conectados se vuelve marginal. Las tostadoras, los frigoríficos, las válvulas del alivio de presión, las farolas y los parquímetros pueden estar conectados a la red sin un dispositivo de comunicación separado. Los chipsets M2M pueden procesar, almacenar, y transmitir datos sin hardware de computación, y los sensores que funcionen con pilas ahora se pueden configurar con el fin de transmitir datos durante un periodo de años.
Bytes baratos
Cada año el almacenamiento y el procesamiento se vuelven más baratos y más abundantes. Los consumidores pueden comprar un disco duro externo con dos terabytes de almacenamiento por una fracción del coste histórico de almacenamiento, y productos on-line, como Dropbox e iCloud, proveen almacenamiento barato en la nube. Versiones comerciales de estos dispositivos y servicios on-line pueden almacenar cantidades masivas de datos, lo cual facilita grados mayores de procesamiento y analítica. Productos como el sistema Pi de OSIsoft sirven como depósitos e historiadores de datos para los datos archivados recibidos del ambiente.

Computación en frontera… y en nube

A medida que el uso de datos crece de manera exponencial, la computación en nube crece también. Hoy día, cada persona con un Smartphone o una tableta utiliza la computación en nube cuando utilizan aplicaciones o navegan la web. Cantidades grandes de datos se transmiten y se almacenan seguramente y en centros de datos remotos, lo cual permite la utilización barata e extendida de información. Muchas compañías no pueden seguir el ritmo de esta explosión de “Big Data” y recurren a automatización guiada por reglas establecidas para manejar los estallidos de datos. El poder de procesamiento que se encastra dentro de sensores y dispositivos permite que las reglas se deleguen más tarde en el proceso; los datos que cumplan condiciones se pueden procesar localmente, reduciendo enormemente la cantidad de datos que necesite que se devuelvan. Tanto la computación en nube como la computación en frontera permiten el crecimiento exponencial de dispositivos funcionales a través del procesamiento de datos más eficaz. Permiten modelos de negocios alternativos tal como Software as a Service y la subida de inteligencia artificial.

Corrientes enormes de datos y analítica robusta

Apoyados de cobertura inalámbrica ubicua y poder de procesamiento robusto, el número de dispositivos y la frecuencia a la que coleccionan los datos es cada vez mas grande. Los segmentos temporales de información se vuelven más estrechos. Con el procesamiento de frontera, cuando se cumplen ciertas condiciones, los dispositivos pueden ser instruidos a coleccionar y a transmitir datos en una escala de tiempo más cerca de tiempo real, lo cual permite mayor conciencia y entendimiento situacional de condiciones de campo. Esta capacidad puede reducir enormemente los costes operacionales por eliminar la necesidad de viajar para entender un asunto remoto. Una colección más amplia de datos con información más especifica permite que maquinas analíticas como la plataforma Asset360™ de Black & Veatch creen inteligencia operacional y faciliten planificación adaptable para maximizar operaciones del sistema. El análisis de los datos de rendimiento puede revelar tendencias operacionales que puedan reducir la probabilidad de fallos del equipo.

Para eso hay una aplicación (¡y para ESO, también!)

Los Smartphones, las tabletas, los portátiles convencionales y las estaciones de trabajo son fuentes para interrelación, visualización, y control. En casa, la gente los utiliza para acceder a una selección amplia de servicios e información desde dispositivos de salud hasta sistemas de alarmas. El proceso del desarrollo de aplicaciones se ha vuelto simplificado, y las capacidades de visualización han mejorados. Con la llegada de HTML5, las oportunidades del desarrollo de aplicaciones evolucionarán aun más. Nuestros dispositivos Smart se han transformado a una combinación de control remoto-visualizador de información- comunicador de los medios sociales. Con aplicaciones como el navegador de tráfico WAYZ, los usuarios ayudan a recolectar información de tráfico de casi tiempo real, extendiendo capas de consciencia situacional dinámica sobre sensores estáticos. En algunas ciudades, los ciudadanos pueden utilizar sus dispositivos Smart para sacar fotos y reportar baches y otros asuntos del mantenimiento de la calle directamente a las operaciones municipales para que los reparen.

La infraestructura Smart e integrada

Estos siete factores convergen a ser parte de una infraestructura Smart e integrada que sea más distribuida, conectada e inteligente. Esta infraestructura permite acceso a terreno de la red nuevo donde ahora se pueden capturar de la frontera de la red los datos finales que fueron inaccesibles anteriormente. Compañías de ingeniería pueden derivar un mayor valor de esta conectividad extendida y pueden suponer sistemas de capa de aplicación que crucen la red. Compañías de ingeniería e informática pueden proveer ofertas de servicio más robustas y un conocimiento operacional mayor para los consumidores que quieren mejorar el rendimiento o la sostenibilidad. Las ciudades y los servicios públicos quieren capitalizar la analítica emergente para volverse más conscientes, conectados, eficientes, y fuertes—los cuales son los remates de la revolución de la ciudad Smart. A medida que la infraestructura evoluciona, también deben evolucionar las estrategias de diseñar, construir, y operar esta infraestructura para ganar el beneficio máximo que proveen estas capacidades convergidas y tecnologías emergentes.

Discussion

Leave your comment below, or reply to others.

2 Comments

  1. Jessie Feller

    Rick – many thanks for this great article. I particularly appreciate the breakdown of each factor and how they are converging to really build a smart city paradigm. The term ‘smart city’ is thrown around a lot but everyone has different definitions of it. Your article really lays out a comprehensive explanation and definition. How do think these factors will change in the next five years? What new factors are you anticipating will become #8 and #9?

    Reply
    • Rick Azer

      Jessie,
      Excellent question. There are several areas of technology development that will emerge in the next few years. Here are two that I believe will lead to significant impact in our cities.
      First – Wireless Charging: Advances in power harvesting that allow sensors, devices and equipment to receive power “over the air” which would greatly increase the amount of items participating in the Internet of Everything. Imagine being able to remove that last wire, and not being limited by battery life. Sensor proliferation will result, bringing even more situational awareness to systems. Today small devices can already harvest power. Vast improvements are in the development stage.
      Second – Artificial Intelligence: We hear a lot about the “rise of machines” in visionary and sometimes cautionary contexts. The ability to rapidly process information at the edge, along with mobility and communication will bring transformational changes to everyday appliances. Already we are seeing significant advances in autonomous vehicles and robots.
      I’d like to hear what other readers think might be candidates for the next factors.

      Reply

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from the CityMinded.org Blog

Spotlighting innovations in urban sustainability and connected technology

Big Data, Automation, and the Future of Transportation

In recent years, a variety of forces (economic, environmental, and social) have quickly given rise to “shared mobility,” a collective of entrepreneurs and consumers leveraging technology to share transportation resources, save money, and generate capital. Bikesharing services, such as BCycle, and business-to-consumer carsharing services, such as Zipcar, have become part of a sociodemographic trend that has pushed shared mobility from the fringe to the mainstream. The role of shared mobility in the broader landscape of urban mobility has become a frequent topic of discussion. Shared transportation modes—such as bikesharing, carsharing, ridesharing, ridesourcing/transportation network companies (TNCs), and microtransit—are changing how people travel and are having a transformative effect on smart cities.

Smart Cities and the Weather

A study by the US National Center for Atmospheric Research (NCAR) in 2008 found that the impact of routine weather events on the US economy equates annually to about 3.4% of the country’s GDP (about $485 billion). This excludes the impact of extreme weather events that cause damage and disruption – after all, even “ordinary” weather affects supply of and demand for many items, and the propensity of businesses and consumers to buy them. NCAR found that mining and agriculture are particularly sensitive to weather influences, with utilities and retail not far behind.

Many of these, disaster management included, are the focus of smart city innovations. Not surprisingly, therefore, as they seek to improve and optimize these systems, smart cities are beginning to understand the connection between weather and many of their goals.  A number of vendors (for example, IBM, Schneider Electric, and others) now offer weather data-driven services focused specifically on smart city interests.

Meeting of the Minds is made possible by the generous support of these organizations.