Good NEWS for our Renewable Energy Future

By John Addison

John Addison is the author of two books - Save Gas, Save the Planet that details the future of transportation and Revenue Rocket about technology partner strategy. CNET, Clean Fleet Report, and Meeting of the Minds have published over 300 of his articles. Prior to being a writer and speaker, he was in partner and sales management for technology companies such as Sun Microsystems. Follow John on Twitter @soaringcities.

Our future is full of good NEWS: net zero, electric mobility, wind power,and solar energy.

Net Zero

Net-zero-energy buildings, campuses, and cities are the future. They are so efficient than in a year they generate as much renewable energy as their total energy consumption. For example, two thousand people live in the net-zero community of West Village in Davis, California. All apartments and single-family homes are net-zero. Energy efficiency is achieved with tight construction, triple pane windows, great insulation, Energy Star appliances and LED lighting. These homes are designed and ventilated to stay cool in the summer and warm in the winter. Heat pump and space cooling is used instead of energy-hungry conventional HVAC. With excellent energy efficiency, solar power meets energy needs.

In California, by 2020, the building code requires new single-family houses to be net-zero; by 2025, new government buildings; by 2030, new commercial buildings including all apartments.

We are progressing from net-zero homes, to net-zero communities, to net-zero cities.

Electric Mobility

Electric mobility greatly improves efficiency by electrifying everything. For five years, my wife and I have driven electric cars, never spending over $35 per month to fuel them. A growing number of people living in cities and university towns do not bother to own a car, efficiently traveling everywhere on bus and rail. Buses are increasingly electric, including using hydrogen from renewables to extend range. In over 20 major nations, electric high-speed rail connects cities. Uber, Lyft, Google, and major automakers are all planning on electric self-driving cars. We are using phone apps to guide us through a day of electric rail, bus, and rideshare services.

Wind Power

Globally, wind power exceeds over 400GW, equivalent to 600 large coal or nuclear plants. Wind power is being installed at record rates n China, the United States, and Spain. It is being installed offshore at record rates in the United Kingdom, Germany, and Denmark.

In the United States, installed wind power has grown 400 percent in the past seven years. From the Dakotas to Texas, wind power is less expensive than other generation of electricity. Texas has 40 different wind farms feeding 18GW of electricity on to the grid, meeting 12 percent of the total electricity generated in the state.

Solar Energy

Solar panels cost only 10 percent of 10 years ago. City governments are leading by example: Las Vegas has solar roofs on 37 government buildings, community centers, fire stations, and in parks: New Jersey Transit covers major parking structures with solar; Raleigh has solar on many government buildings; San Diego has solar on many school roofs. Cities from Austin to San Francisco have even established their own utility to deliver solar power.

In California, 500,000 homes have solar on their roofs. Corporations from Apple to Toyota to Walmart have massive solar installations on their buildings and many parking structures.

Most solar power is large utility-scale photovoltaics (PV) where a utility can procure solar power for as little as 3-cents per kilowatt and deliver the energy across the grid.

For 377 MW, PG&E uses concentrating solar power (CSP), rather than PV, from Ivanpah, a project developed by Google and Brightsource in the California desert and managed by NRG. In the Nevada desert, SolarReserve adds 10 hours of molten-salt storage to CSP, so that solar power is delivered during the most valuable hours; over 10,000 computer controlled heliostats are used to optimize solar power production.

SPIES = the new infrastructure for clean energy

SPIES is the new technology infrastructure for our efficient and renewable future, replacing an old infrastructure of pipelines, dumb grids, and coal railcars. Today, energy technology meets information technology. SPIES is my acronym for storage, pricing, internet, efficiency, and software.

Storage

Globally, over 160 GW of electricity storage is used. Most prevalent, and least expensive, is pumped hydro, where water is pumped uphill when energy demand is lowest and falls through turbines when energy demand is highest. Gravity works.

Thermal storage is an umbrella of low-cost solutions – heating at the right time, making ice at the best time, and sophisticated storage like molten salt.

Lithium-ion batteries are the fast growing form of storage, with lithium battery prices falling 70 percent in the past 18 months. Tesla in partnership with Panasonic will drive prices lower with their new gigafactory in Reno. Volkswagen is rumored to be planning their own $11 billion battery gigafactory. Lithium-ion faces competition from low-cost lead batteries, flow batteries, and new chemistries such as lithium sulfur, zinc air, and solid-state batteries.

Pricing

Time-of-use and realtime pricing are encouraging efficiency, better matching demand to the supply of energy including variable renewables, and saving money.

Electricity wholesaler, PJM, has been the leader in demand response, a voluntary program that compensates customers for reducing their electricity use when requested by PJM, during periods of high power prices or when the reliability of the grid is threatened. A commercial customer saves thousands of dollars by cycling down air conditioning when receiving notifications. Smart home thermostats automatically delay running the dishwasher when receiving a price signal through the internet.

By adding pricing to intelligent energy storage, Stem actively participates in the California Independent System Operator (CAISO) day-ahead and real-time markets. Stem aggregates the excess capacities of customer-sited advanced batteries and bids those stored kilowatts into the CAISO market.

Internet

The internet is used by billions of people; the internet of things (IoT) will be used by trillions of meters, sensors, controls, heating, ventilation, and even streetlights. Machines communicating with machines, respond, optimize and learn. The City of Los Angeles uses road sensors and cameras to improve traffic light timing to keep traffic moving, and uses vehicle communication to give signal priority to light-rail and BRT. The city of Barcelona uses a Cisco Wi-FI Mesh network for communication between sensors, actuators, cameras, and technology so that drivers can more quickly find parking spaces and millions can be saved only having LED street lights on when needed.

I toured a net-zero building for over 1,000 employees at the National Renewable Energy Lab. Using energy management and IoT, natural daylight and ventilation are maximized; lights and other energy use is minimized when people are not present. The building is so energy efficiency and well managed with IoT that solar, wind, and geothermal energy meet all needs. Even though located in the foothills of the Rocky Mountains in Colorado, the building stays cool in the summer and warm in the winter.

Efficiency

When I bought my electric car, I replaced a 15-percent efficient gasoline powered car with a 90-percent efficient electric car. When I ride on an electric bus with 50 others, we collectively move with greater efficiency. When we board high-speed rail with one thousand others, efficiency per passenger is amazing.

In high-performance buildings, energy efficiency is achieved with tight construction, triple pane windows, optimal insulation, Energy Star appliances, and LED lighting. Efficiency is improved when homes to skyscrapers are designed to stay cool in the summer and warm in the winter. Heat pump and space cooling is used instead of energy-hungry conventional HVAC.

At the latest Silicon Valley Leadership Group (SVLG), Dr. Mark Jacobson detailed how we could meet 100 percent of the world’s energy needs with wind, water, and solar (WWS). The transition would include electrifying everything, with the benefit of being 38 percent more efficient, needing only 12TW of global energy by 2050, instead of 19.4TW.

Software

Software is taking energy to the next level. Software can manage hundreds of wind and solar farms, making them as manageable as 24/7 power plants. Southern California Edison, the utility that serves 14 million, is using advanced software that makes distributed solar power managed as a virtual power plant; its solar plus storage is replacing two shut-down nuclear plants and dozens of methane peaker plants.

Software is making buildings more efficient, running operations only when needed and most cost-effectively matched to TOU pricing. Software converts batteries into intelligent energy storage. Software giant, Oracle hosted the latest SVLG meeting that I attended. Oracle is headquartered in Redwood City; the city avoids peak utility charges by managing its lithium batteries with Green Charge Networks cloud services that use big data and machine learning.

Future energy will be free of toxic spills into our drinking water, nuclear disasters, and coal miners dying from lung cancer. Future energy will keep our lights on and elevators running after superstorms. Future energy will be wind and solar powering efficient and electric buildings, mobility, and cities.

We can celebrate good NEWS – net zero, electric mobility, wind power, and solar energy, all using the SPIES technology platform of the future.

Discussion

Leave your comment below, or reply to others.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from the CityMinded.org Blog

Spotlighting innovations in urban sustainability and connected technology

Researcher and Paratransit Operator Collaboration in South Africa

Meeting of the Minds took a few moments to talk with Herrie Schalekamp about new working relationships between researchers and paratransit operators in South Africa and beyond. Herrie is the ACET Research Officer at the University of Cape Town’s Centre for Transport Studies. In addition to his research, teaching and consulting in the fields of paratransit and public transport reform he is involved in specialised educational programmes for paratransit operators and government officials. Herrie’s activities form part of a broader endeavour to investigate and contribute to improved public transport operations and regulation in Sub-Saharan African cities under ACET – the African Centre of Excellence for Studies in Public and Non-motorised Transport.

Leveraging Big Data & Analytics to Revitalize Brownfields

Brownfields are sites that are vacant or underutilized due to environmental contamination, real or imagined. There are brownfields of some kind in virtually every city and town in the U.S., usually related to a gas station, dry cleaner, auto repair shop, car dealership or some other ubiquitous local business that once benefited the community it now burdens with environmental hazards or old buildings.

In addressing this issue, technology has not been effectively deployed to promote redevelopment of these sites and catalyze community revitalization. We find that the question around the use of technology and data in advancing the redevelopment of brownfields is twofold:

How can current and future technology advancements be applied to upgrade existing brownfield modeling tools? And then, how can those modeling tools be used to accelerate transformative, sustainable, and smart redevelopment and community revitalization?

New Public and Private Funding Strategies for Urban Parks

Across the country, urban parks are enjoying a renaissance. Dozens of new parks are being built or restored and cities are being creative about how and where they are located. Space under highways, on old rail infrastructure, reclaimed industrial waterfronts or even landfills are all in play as development pressure on urban land grows along with outdoor recreation needs.

These innovative parks are helping cities face common challenges, from demographic shifts, to global competitiveness to changing climate conditions. Mayors and other city officials are taking a fresh look at parks to improve overall community health and sense of place, strengthen local economies by attracting new investments and creating jobs, help manage storm water run-off, improve air quality, and much more. When we think of city parks holistically, accounting for their full role in communities, they become some of the smartest investments we can make.

Meeting of the Minds is made possible by the generous support of these organizations.

Urban sustainability trends, events, and resources

The interaction of cities, technology, and sustainability is rapidly evolving. Join our email list and stay in the loop.

You have Successfully Subscribed!