Drilling Deeper into California’s Drought and Water Distribution

By Hannah Greinetz

Hannah Greinetz is the Managing Editor of the Meeting of the Minds Blog. She holds a BA in Anthropology from UC Santa Cruz and an MBA in Sustainable Management from Presidio Graduate School.

There’s a lot of conversation going on around water in the arid West during this drought year, but not all of it is accurate.  California is being hit hard, and the state is clearly taking action and taking advantage of the crisis to promote water legislation; for more on how the state is dealing with the drought at various levels, check out my article from a few weeks ago.  But what’s just as important is the public perception of the drought, and the conversations that this round of water scarcity is evoking.

Where Does All the Water Go?

An oft-cited figure is that 80% of California’s water is consumed and used by agriculture, leaving 20% for homes, businesses, and industrial uses. 80%  sounds like (and is), a massive amount of water,  but to say this portion of the state’s water supply is used by the ag sector is not entirely accurate.  This one skewed factoid is turning agriculture into a scapegoat for California residents who are feeling the price penalties for water and are being asked to cut their use back by 10% by Governor Jerry Brown in the face of the drought, and by 20% by 2020 as part of the Water Conservation Act of 2009. Hearing how much water is used by farmers in the state causes residents to resent conservation measures and policies, and to adopt a mindset of ‘what difference does it really make it I stop watering my lawn when farmers are using four times as much as all os us, and no one’s doing anything about it.’

The numbers on California water require some disentangling to get a clear picture.  There are two different systems of accounting that produce numbers on who uses how much water; one looks solely at developed water and the other considers total annual runoff, which accounts for all precipitation and surface water in the state.  Depending on how you look at it, agriculture does actually use 80% of the water supply – the developed water supply. Developed water is accounted for as water that is captured behind one of California’s hundreds of dams, stored in one of its 1300+ reservoirs, and transported in California’s hundreds of miles of aqueducts, and used only for economic purposes. But if we’re really looking at where California’s water goes, we have to consider the 46% of the total annual water supply that is left in-stream or allowed to percolate into the ground to achieve healthy and sustainable levels of salinity and water quality, and that is needed to maintain a healthy balance in the ecosystems.

So with a narrowed focus, agriculture does use 80% of California water, and 20% is left for urban and industrial use. Another way, agriculture uses 43%, while 46% goes to the environment, and 11% to municipal uses. If the latter numbers were cited more often, would Californians feel more incentivized to save water, thinking that their conservation efforts were directly connected to the health of their environment?  Maybe, but if we drill even deeper into the numbers on agriculture, keeping in mind how much water is used for growing crops, California isn’t seeing a huge return on investment with their precious shared and ever-scarcer freshwater resources.

California’s Agricultural Return – Worth the Sacrifice?

California is the top producer of many of the nation’s fresh fruits and vegetables; the American diet would be vastly different if it weren’t for California’s contributions in volume and diversity of crops. CA produces over 90% of the broccoli consumed in the US, 95% of garlic, 99% of all artichokes and walnuts, 71% of all the spinach sold in the US, and the list goes on.

Looking at this another way, California grows some incredibly water-intensive crops, like rice and almonds.  And in the past few years, almonds have been one of California’s most lucrative agricultural exports.  But in the conversation about water use, this brings in the topic of virtual water – the water embedded in the food and animals. For example, it takes 2,500 liters of water to produce one kilogram of rice. In this vein, California is also one of the nation’s top producers and exporters of hay and alfalfa, which are water-intensive crops and are largely sent to Japan and water-poor Asian countries to feed their growing livestock sectors.  This means that an incredibly water-poor state is exporting millions of gallons of virtual water annually.

Agriculture produces only 2% of California’s GDP, and that’s the generous estimation that includes jobs and processing of food, the number is also cited as low at 1% of state GDP.  Agriculture also directly employs about 53,000 people, which is only about .3 percent of California’s employed.

Growing Rice In the Desert

Economist Paul Romer stated in 2004 that, “A crisis is a terrible thing to waste.”  California is red and deeper red on precipitation maps of the country this year, with a hopeful undertone in the conversation about an El Nino winter.  In some circles, a heavy winter would be the worst thing that could happen to California in terms of long term water management strategy.  It is indeed an important time to be highlighting public interest and turning the conversation around water policy into one that includes future water management strategies, regional plans, best practices, and to be asking the hard questions about what California’s water future will look like.

(The state’s rise to the top as the nation’s largest and most diverse food producer was largely dependent on the development of the large water projects built in the state in the state: the federally funded and operated Central Valley Project, and the state funded and operated State Water Project. San Francisco famously owns its water supply from Hetch Hetchy, which neighbors the Yosemite Valley, while Los Angeles rather infamously gained water rights to the Owen’s Valley to secure its water supply.  The changes that these water projects have made to the California landscape in the past century are mind-boggling, but they are responsible for delivering drinking water to millions and irrigating hundreds of thousands of acres of farmland.)

Discussion

Leave your comment below, or reply to others.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

Read more from the Meeting of the Minds Blog

Spotlighting innovations in urban sustainability and connected technology

Innovative Financing for Cities: Pay for Results, Not Process

The Environmental Impact Bond. It can be used to finance green infrastructure and similar resiliency-oriented projects, which not only protect cities against flooding and pollution, but also create jobs and green underserved neighborhoods. The return to investors of these projects is based on the extent to which the projects produce results; such as the amount of stormwater diverted from flowing into nearby rivers.

Managing the Transition to Shared Automated Vehicles: Building Today While Designing for Tomorrow

To plan for the transition to automated vehicles, cities and county governments should develop building and zoning codes that not only accommodate adaptable parking but encourage it by design. This can include amending building codes to require infrastructure that makes transforming garages into inhabitable buildings possible. As automated vehicles begin to enter the marketplace, cities should consider incentives and other programs to begin the conversion of ground level parking to commercial uses.

A Future Ready Transportation Plan for the Greater Toronto Region

For much of the twentieth century, transportation planning focused on moving cars as efficiently as possible. This resulted in streets that are designed for cars, with little room for transit vehicles, pedestrians and cyclists. Agencies in charge of roads, signals, parking, taxis and transit need to collaborate more closely to focus on moving people, not just vehicles, as efficiently as possible.

Focusing on all the elements that matters to people not just travel time – It is clear that people travelling across the region have high expectations and want to have consistent, reliable, convenient, clean and low-cost travel options regardless of their preferred mode and what municipal boundaries they cross. People care little about what system they are on or who operates it—they simply want to get where they are going as quickly, comfortably and reliably as possible.